Problem
You are given n
rectangles represented by a 0-indexed 2D integer array rectangles
, where rectangles[i] = [widthi, heighti]
denotes the width and height of the ith
rectangle.
Two rectangles i
and j
(i < j
) are considered interchangeable if they have the same width-to-height ratio. More formally, two rectangles are interchangeable if widthi/heighti == widthj/heightj
(using decimal division, not integer division).
Return **the *number* of pairs of interchangeable rectangles in **rectangles
.
Example 1:
Input: rectangles = [[4,8],[3,6],[10,20],[15,30]]
Output: 6
Explanation: The following are the interchangeable pairs of rectangles by index (0-indexed):
- Rectangle 0 with rectangle 1: 4/8 == 3/6.
- Rectangle 0 with rectangle 2: 4/8 == 10/20.
- Rectangle 0 with rectangle 3: 4/8 == 15/30.
- Rectangle 1 with rectangle 2: 3/6 == 10/20.
- Rectangle 1 with rectangle 3: 3/6 == 15/30.
- Rectangle 2 with rectangle 3: 10/20 == 15/30.
Example 2:
Input: rectangles = [[4,5],[7,8]]
Output: 0
Explanation: There are no interchangeable pairs of rectangles.
Constraints:
n == rectangles.length
1 <= n <= 10^5
rectangles[i].length == 2
1 <= widthi, heighti <= 10^5
Solution (Java)
class Solution {
private long factorial(long n) {
long m = 0;
while (n > 0) {
m += n;
n = n - 1;
}
return m;
}
public long interchangeableRectangles(int[][] rec) {
double[] ratio = new double[rec.length];
for (int i = 0; i < rec.length; i++) {
ratio[i] = (double) rec[i][0] / rec[i][1];
}
Arrays.sort(ratio);
long res = 0;
int k = 0;
for (int j = 0; j < ratio.length - 1; j++) {
if (ratio[j] == ratio[j + 1]) {
k++;
}
if (ratio[j] != ratio[j + 1] || j + 2 == ratio.length) {
res += factorial(k);
k = 0;
}
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).