Problem
You are given an array nums
that consists of non-negative integers. Let us define rev(x)
as the reverse of the non-negative integer x
. For example, rev(123) = 321
, and rev(120) = 21
. A pair of indices (i, j)
is nice if it satisfies all of the following conditions:
0 <= i < j < nums.length
nums[i] + rev(nums[j]) == nums[j] + rev(nums[i])
Return the number of nice pairs of indices. Since that number can be too large, return it modulo 10^9 + 7
.
Example 1:
Input: nums = [42,11,1,97]
Output: 2
Explanation: The two pairs are:
- (0,3) : 42 + rev(97) = 42 + 79 = 121, 97 + rev(42) = 97 + 24 = 121.
- (1,2) : 11 + rev(1) = 11 + 1 = 12, 1 + rev(11) = 1 + 11 = 12.
Example 2:
Input: nums = [13,10,35,24,76]
Output: 4
Constraints:
1 <= nums.length <= 10^5
0 <= nums[i] <= 10^9
Solution (Java)
class Solution {
private int rev(int n) {
int r = 0;
while (n > 0) {
r = r * 10 + n % 10;
n = n / 10;
}
return r;
}
public int countNicePairs(int[] nums) {
HashMap<Integer, Integer> revMap = new HashMap<>();
int cnt = 0;
for (int num : nums) {
int lhs = num - rev(num);
int prevCnt = revMap.getOrDefault(lhs, 0);
cnt += prevCnt;
int mod = 1000000007;
cnt = cnt % mod;
revMap.put(lhs, prevCnt + 1);
}
return cnt;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).