2197. Replace Non-Coprime Numbers in Array

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given an array of integers nums. Perform the following steps:

Return **the *final* modified array.** It can be shown that replacing adjacent non-coprime numbers in any arbitrary order will lead to the same result.

The test cases are generated such that the values in the final array are less than or equal to 10^8.

Two values x and y are non-coprime if GCD(x, y) > 1 where GCD(x, y) is the Greatest Common Divisor of x and y.

  Example 1:

Input: nums = [6,4,3,2,7,6,2]
Output: [12,7,6]
Explanation: 
- (6, 4) are non-coprime with LCM(6, 4) = 12. Now, nums = [12,3,2,7,6,2].
- (12, 3) are non-coprime with LCM(12, 3) = 12. Now, nums = [12,2,7,6,2].
- (12, 2) are non-coprime with LCM(12, 2) = 12. Now, nums = [12,7,6,2].
- (6, 2) are non-coprime with LCM(6, 2) = 6. Now, nums = [12,7,6].
There are no more adjacent non-coprime numbers in nums.
Thus, the final modified array is [12,7,6].
Note that there are other ways to obtain the same resultant array.

Example 2:

Input: nums = [2,2,1,1,3,3,3]
Output: [2,1,1,3]
Explanation: 
- (3, 3) are non-coprime with LCM(3, 3) = 3. Now, nums = [2,2,1,1,3,3].
- (3, 3) are non-coprime with LCM(3, 3) = 3. Now, nums = [2,2,1,1,3].
- (2, 2) are non-coprime with LCM(2, 2) = 2. Now, nums = [2,1,1,3].
There are no more adjacent non-coprime numbers in nums.
Thus, the final modified array is [2,1,1,3].
Note that there are other ways to obtain the same resultant array.

  Constraints:

Solution

class Solution {
    public List<Integer> replaceNonCoprimes(int[] nums) {
        ArrayList<Integer> res = new ArrayList<>();
        int i = 1;
        res.add(nums[0]);
        while (i < nums.length) {
            int first = res.get(res.size() - 1);
            int second = nums[i];
            int gcd = gcd(first, second);
            if (gcd > 1) {
                long lcm = ((long) first * (long) second) / gcd;
                if (!res.isEmpty()) {
                    res.remove(res.size() - 1);
                }
                res.add((int) lcm);
                recursivelyCheck(res);
            } else {
                res.add(second);
            }
            i++;
        }
        return res;
    }

    private int gcd(int a, int b) {
        if (a > b) {
            return gcd(b, a);
        }
        if (b % a == 0) {
            return a;
        }
        return gcd(b % a, a);
    }

    private void recursivelyCheck(ArrayList<Integer> list) {
        if (list.size() < 2) {
            return;
        }
        int a = list.remove(list.size() - 1);
        int b = list.remove(list.size() - 1);
        int gcd = gcd(a, b);
        if (gcd > 1) {
            long lcm = ((long) (a) * (long) (b)) / gcd;
            list.add((int) lcm);
            recursivelyCheck(list);
        } else {
            list.add(b);
            list.add(a);
        }
    }
}

Explain:

nope.

Complexity: