Problem
A k
-booking happens when k
events have some non-empty intersection (i.e., there is some time that is common to all k
events.)
You are given some events [start, end)
, after each given event, return an integer k
representing the maximum k
-booking between all the previous events.
Implement the MyCalendarThree
class:
MyCalendarThree()
Initializes the object.int book(int start, int end)
Returns an integerk
representing the largest integer such that there exists ak
-booking in the calendar.
Example 1:
Input
["MyCalendarThree", "book", "book", "book", "book", "book", "book"]
[[], [10, 20], [50, 60], [10, 40], [5, 15], [5, 10], [25, 55]]
Output
[null, 1, 1, 2, 3, 3, 3]
Explanation
MyCalendarThree myCalendarThree = new MyCalendarThree();
myCalendarThree.book(10, 20); // return 1, The first event can be booked and is disjoint, so the maximum k-booking is a 1-booking.
myCalendarThree.book(50, 60); // return 1, The second event can be booked and is disjoint, so the maximum k-booking is a 1-booking.
myCalendarThree.book(10, 40); // return 2, The third event [10, 40) intersects the first event, and the maximum k-booking is a 2-booking.
myCalendarThree.book(5, 15); // return 3, The remaining events cause the maximum K-booking to be only a 3-booking.
myCalendarThree.book(5, 10); // return 3
myCalendarThree.book(25, 55); // return 3
Constraints:
0 <= start < end <= 10^9
At most
400
calls will be made tobook
.
Solution (Java)
class MyCalendarThree {
private final Node root;
public MyCalendarThree() {
root = new Node(0, 1000000000, 0);
}
public int book(int start, int end) {
updateTree(root, start, end - 1);
return root.val;
}
private void updateTree(Node root, int start, int end) {
if (root == null) {
return;
}
if (root.low >= start && root.high <= end) {
root.val++;
if (root.left != null) {
updateTree(root.left, start, end);
}
if (root.right != null) {
updateTree(root.right, start, end);
}
return;
}
int mid = (root.low + root.high) / 2;
if (root.left == null) {
root.left = new Node(root.low, mid, root.val);
}
if (root.right == null) {
root.right = new Node(mid + 1, root.high, root.val);
}
if (start <= mid) {
updateTree(root.left, start, end);
}
if (end > mid) {
updateTree(root.right, start, end);
}
root.val = Math.max(root.left.val, root.right.val);
}
static class Node {
int low;
int high;
int val;
Node left;
Node right;
public Node(int low, int high, int val) {
this.low = low;
this.high = high;
this.val = val;
}
}
}
/*
* Your MyCalendarThree object will be instantiated and called as such:
* MyCalendarThree obj = new MyCalendarThree();
* int param_1 = obj.book(start,end);
*/
Solution (Javascript)
var MyCalendarThree = function() {
this.list = new Map();
};
/**
* @param {number} start
* @param {number} end
* @return {number}
*/
MyCalendarThree.prototype.book = function(start, end) {
let tmp = this.list.get(start);
tmp = tmp === undefined ? 1 : ++tmp;
this.list.set(start, tmp);
tmp = this.list.get(end);
tmp = tmp === undefined ? -1 : --tmp;
this.list.set(end, tmp);
let tmpList = Array.from(this.list);
tmpList.sort((a, b) => a[0] - b[0]);
let max = 0, val = 0;
for(let i = 0; i < tmpList.length; ++i){
let tmp = tmpList[i][1];
if(tmp !== undefined){
val += tmp;
max = Math.max(max, val);
}
}
return max;
};
/**
* Your MyCalendarThree object will be instantiated and called as such:
* var obj = new MyCalendarThree()
* var param_1 = obj.book(start,end)
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).