Problem
Given an empty set of intervals, implement a data structure that can:
Add an interval to the set of intervals.
Count the number of integers that are present in at least one interval.
Implement the CountIntervals
class:
CountIntervals()
Initializes the object with an empty set of intervals.void add(int left, int right)
Adds the interval[left, right]
to the set of intervals.int count()
Returns the number of integers that are present in at least one interval.
Note that an interval [left, right]
denotes all the integers x
where left <= x <= right
.
Example 1:
Input
["CountIntervals", "add", "add", "count", "add", "count"]
[[], [2, 3], [7, 10], [], [5, 8], []]
Output
[null, null, null, 6, null, 8]
Explanation
CountIntervals countIntervals = new CountIntervals(); // initialize the object with an empty set of intervals.
countIntervals.add(2, 3); // add [2, 3] to the set of intervals.
countIntervals.add(7, 10); // add [7, 10] to the set of intervals.
countIntervals.count(); // return 6
// the integers 2 and 3 are present in the interval [2, 3].
// the integers 7, 8, 9, and 10 are present in the interval [7, 10].
countIntervals.add(5, 8); // add [5, 8] to the set of intervals.
countIntervals.count(); // return 8
// the integers 2 and 3 are present in the interval [2, 3].
// the integers 5 and 6 are present in the interval [5, 8].
// the integers 7 and 8 are present in the intervals [5, 8] and [7, 10].
// the integers 9 and 10 are present in the interval [7, 10].
Constraints:
1 <= left <= right <= 10^9
At most
10^5
calls in total will be made toadd
andcount
.At least one call will be made to
count
.
Solution
class CountIntervals {
private final TreeMap<Integer, Integer> map;
private int count;
public CountIntervals() {
map = new TreeMap<>();
map.put(-1, -1);
map.put(1_000_000_001, 1_000_000_001);
count = 0;
}
public void add(int left, int right) {
Map.Entry<Integer, Integer> item =
map.floorEntry(left).getValue() < left
? map.ceilingEntry(left)
: map.floorEntry(left);
while (item.getKey() <= right) {
left = Math.min(left, item.getKey());
right = Math.max(right, item.getValue());
count -= item.getValue() - item.getKey() + 1;
map.remove(item.getKey());
item = map.ceilingEntry(item.getKey());
}
map.put(left, right);
count += right - left + 1;
}
public int count() {
return count;
}
}
/**
* Your CountIntervals object will be instantiated and called as such:
* CountIntervals obj = new CountIntervals();
* obj.add(left,right);
* int param_2 = obj.count();
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).