Problem
Given a data stream input of non-negative integers a1, a2, ..., an
, summarize the numbers seen so far as a list of disjoint intervals.
Implement the SummaryRanges
class:
SummaryRanges()
Initializes the object with an empty stream.void addNum(int val)
Adds the integerval
to the stream.int[][] getIntervals()
Returns a summary of the integers in the stream currently as a list of disjoint intervals[starti, endi]
.
Example 1:
Input
["SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"]
[[], [1], [], [3], [], [7], [], [2], [], [6], []]
Output
[null, null, [[1, 1]], null, [[1, 1], [3, 3]], null, [[1, 1], [3, 3], [7, 7]], null, [[1, 3], [7, 7]], null, [[1, 3], [6, 7]]]
Explanation
SummaryRanges summaryRanges = new SummaryRanges();
summaryRanges.addNum(1); // arr = [1]
summaryRanges.getIntervals(); // return [[1, 1]]
summaryRanges.addNum(3); // arr = [1, 3]
summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]
summaryRanges.addNum(7); // arr = [1, 3, 7]
summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]
summaryRanges.addNum(2); // arr = [1, 2, 3, 7]
summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]
summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]
summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]
Constraints:
0 <= val <= 10^4
At most
3 * 10^4
calls will be made toaddNum
andgetIntervals
.
Follow up: What if there are lots of merges and the number of disjoint intervals is small compared to the size of the data stream?
Solution
class SummaryRanges {
private static class Node {
int min;
int max;
public Node(int val) {
min = val;
max = val;
}
}
private List<Node> list;
public SummaryRanges() {
list = new ArrayList<>();
}
public void addNum(int val) {
int left = 0;
int right = list.size() - 1;
int index = list.size();
while (left <= right) {
int mid = left + (right - left) / 2;
Node node = list.get(mid);
if (node.min <= val && val <= node.max) {
return;
} else if (val < node.min) {
index = mid;
right = mid - 1;
} else if (val > node.max) {
left = mid + 1;
}
}
list.add(index, new Node(val));
}
public int[][] getIntervals() {
int i = 1;
while (i < list.size()) {
Node prev = list.get(i - 1);
Node curr = list.get(i);
if (curr.min == prev.max + 1) {
prev.max = curr.max;
list.remove(i--);
}
i++;
}
int len = list.size();
int[][] res = new int[len][2];
for (int j = 0; j < len; j++) {
Node node = list.get(j);
res[j][0] = node.min;
res[j][1] = node.max;
}
return res;
}
}
/**
* Your SummaryRanges object will be instantiated and called as such:
* SummaryRanges obj = new SummaryRanges();
* obj.addNum(val);
* int[][] param_2 = obj.getIntervals();
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).