Problem
You are implementing a program to use as your calendar. We can add a new event if adding the event will not cause a double booking.
A double booking happens when two events have some non-empty intersection (i.e., some moment is common to both events.).
The event can be represented as a pair of integers start
and end
that represents a booking on the half-open interval [start, end]
, the range of real numbers x
such that start <= x < end
.
Implement the MyCalendar
class:
MyCalendar()
Initializes the calendar object.boolean book(int start, int end)
Returnstrue
if the event can be added to the calendar successfully without causing a double booking. Otherwise, returnfalse
and do not add the event to the calendar.
Example 1:
Input
["MyCalendar", "book", "book", "book"]
[[], [10, 20], [15, 25], [20, 30]]
Output
[null, true, false, true]
Example 2:
MyCalendar myCalendar = new MyCalendar();
myCalendar.book(10, 20); // return True
myCalendar.book(15, 25); // return False, It can not be booked because time 15 is already booked by another event.
myCalendar.book(20, 30); // return True, The event can be booked, as the first event takes every time less than 20, but not including 20.
Solution (Java)
class MyCalendar {
static class Meeting implements Comparable<Meeting> {
public final int start;
public final int end;
public Meeting(int start, int end) {
this.start = start;
this.end = end;
}
@Override
public int compareTo(Meeting anotherMeeting) {
return this.start - anotherMeeting.start;
}
}
private final TreeSet<Meeting> meetings;
public MyCalendar() {
meetings = new TreeSet<>();
}
public boolean book(int start, int end) {
Meeting meetingToBook = new Meeting(start, end);
Meeting prevMeeting = meetings.floor(meetingToBook);
Meeting nextMeeting = meetings.ceiling(meetingToBook);
if ((prevMeeting == null || prevMeeting.end <= meetingToBook.start)
&& (nextMeeting == null || meetingToBook.end <= nextMeeting.start)) {
meetings.add(meetingToBook);
return true;
}
return false;
}
}
/**
* Your MyCalendar object will be instantiated and called as such:
* MyCalendar obj = new MyCalendar();
* boolean param_1 = obj.book(start,end);
*/
Solution (Javascript)
var MyCalendar = function() {
this.root = null
};
/**
* @param {number} start
* @param {number} end
* @return {boolean}
*/
MyCalendar.prototype.book = function(start, end) {
if (!this.root) {
this.root = new TreeNode(start, end)
return true
}
return insert(this.root, new TreeNode(start, end))[1]
};
/**
* Your MyCalendar object will be instantiated and called as such:
* var obj = new MyCalendar()
* var param_1 = obj.book(start,end)
*/
const TreeNode = function (start, end) {
this.start = start
this.end = end
this.left = null
this.right = null
}
const insert = (node, newNode) => {
if (node === null) {
return [newNode, true]
}
if (newNode.start >= node.end) {
const [right, valid] = insert(node.right, newNode)
node.right = right
return [node, valid]
} if (newNode.end <= node.start) {
const [left, valid] = insert(node.left, newNode)
node.left = left
return [node, valid]
}
return [node, false]
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).