Problem
You are given a 0-indexed array nums
of n
integers, and an integer k
.
The k-radius average for a subarray of nums
centered at some index i
with the radius k
is the average of all elements in nums
between the indices i - k
and i + k
(inclusive). If there are less than k
elements before or after the index i
, then the k-radius average is -1
.
Build and return **an array *avgs
* of length n
where avgs[i]
is the k-radius average for the subarray centered at index **i
.
The average of x
elements is the sum of the x
elements divided by x
, using integer division. The integer division truncates toward zero, which means losing its fractional part.
- For example, the average of four elements
2
,3
,1
, and5
is(2 + 3 + 1 + 5) / 4 = 11 / 4 = 2.75
, which truncates to2
.
Example 1:
Input: nums = [7,4,3,9,1,8,5,2,6], k = 3
Output: [-1,-1,-1,5,4,4,-1,-1,-1]
Explanation:
- avg[0], avg[1], and avg[2] are -1 because there are less than k elements before each index.
- The sum of the subarray centered at index 3 with radius 3 is: 7 + 4 + 3 + 9 + 1 + 8 + 5 = 37.
Using integer division, avg[3] = 37 / 7 = 5.
- For the subarray centered at index 4, avg[4] = (4 + 3 + 9 + 1 + 8 + 5 + 2) / 7 = 4.
- For the subarray centered at index 5, avg[5] = (3 + 9 + 1 + 8 + 5 + 2 + 6) / 7 = 4.
- avg[6], avg[7], and avg[8] are -1 because there are less than k elements after each index.
Example 2:
Input: nums = [100000], k = 0
Output: [100000]
Explanation:
- The sum of the subarray centered at index 0 with radius 0 is: 100000.
avg[0] = 100000 / 1 = 100000.
Example 3:
Input: nums = [8], k = 100000
Output: [-1]
Explanation:
- avg[0] is -1 because there are less than k elements before and after index 0.
Constraints:
n == nums.length
1 <= n <= 10^5
0 <= nums[i], k <= 10^5
Solution (Java)
class Solution {
public int[] getAverages(int[] nums, int k) {
// initialize result array with -1
int[] res = new int[nums.length];
Arrays.fill(res, -1);
if (nums.length <= (k * 2)) {
// return if not enough elements
return res;
}
long sum = 0;
long range = 2 * k + 1L;
// take sum of all elements from 0 to k*2 index
for (int i = 0; i <= 2 * k; ++i) {
sum += nums[i];
}
// update first valid avg
res[k] = (int) (sum / range);
// update other valid averages using sliding window
for (int i = k + 1; i < nums.length - k; ++i) {
sum = sum - nums[i - k - 1] + nums[i + k];
res[i] = (int) (sum / range);
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).