Problem
Given an array of integers and an integer k, you need to find the total number of continuous subarrays whose sum equals to k.
Example 1:
Input:nums = [1,1,1], k = 2
Output: 2
Note:
- The length of the array is in range [1, 20,000].
- The range of numbers in the array is [-1000, 1000] and the range of the integer k is [-1e7, 1e7].
Solution (Java)
import java.util.HashMap;
import java.util.Map;
public class Solution {
public int subarraySum(int[] nums, int k) {
int tempSum = 0;
int ret = 0;
Map<Integer, Integer> sumCount = new HashMap<>();
sumCount.put(0, 1);
for (int i : nums) {
tempSum += i;
if (sumCount.containsKey(tempSum - k)) {
ret += sumCount.get(tempSum - k);
}
if (sumCount.get(tempSum) != null) {
sumCount.put(tempSum, sumCount.get(tempSum) + 1);
} else {
sumCount.put(tempSum, 1);
}
}
return ret;
}
}
Solution (Javascript)
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
var subarraySum = function(nums, k) {
var map = {};
var len = nums.length;
var sum = 0;
var res = 0;
map[0] = 1;
for (var i = 0; i < len; i++) {
sum += nums[i];
res += (map[sum - k] || 0);
map[sum] = (map[sum] || 0) + 1;
}
return res;
};
Explain:
在 i
处,map[key]
表示 0 ~ i
中和为 key
的子数组数量。
在 i
处,0 ~ i
的和为 sum
,此前和为 k
的子数组个数为 map[sum - k]
。
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).