Problem
Given an integer array nums
and an integer k
, return true
**if *nums
* has a continuous subarray of size at least two whose elements sum up to a multiple of** k
**, or *false
* otherwise**.
An integer x
is a multiple of k
if there exists an integer n
such that x = n * k
. 0
is always a multiple of k
.
Example 1:
Input: nums = [23,2,4,6,7], k = 6
Output: true
Explanation: [2, 4] is a continuous subarray of size 2 whose elements sum up to 6.
Example 2:
Input: nums = [23,2,6,4,7], k = 6
Output: true
Explanation: [23, 2, 6, 4, 7] is an continuous subarray of size 5 whose elements sum up to 42.
42 is a multiple of 6 because 42 = 7 * 6 and 7 is an integer.
Example 3:
Input: nums = [23,2,6,4,7], k = 13
Output: false
Constraints:
1 <= nums.length <= 10^5
0 <= nums[i] <= 10^9
0 <= sum(nums[i]) <= 2^31 - 1
1 <= k <= 2^31 - 1
Solution (Java)
class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();
int sum = 0;
map.put(0, -1);
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
int remainder = sum % k;
if (map.containsKey(remainder)) {
if (map.get(remainder) + 1 < i) {
return true;
}
} else {
map.put(remainder, i);
}
}
return false;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).