Problem
Given an array of positive integers nums
and a positive integer target
, return the minimal length of a contiguous subarray [numsl, numsl+1, ..., numsr-1, numsr]
of which the sum is greater than or equal to target
. If there is no such subarray, return 0
instead.
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: target = 4, nums = [1,4,4]
Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1]
Output: 0
Constraints:
1 <= target <= 10^9
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^4
Follow up: If you have figured out the O(n)
solution, try coding another solution of which the time complexity is O(n log(n))
.
Solution
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int i = 0;
int j = 0;
int sum = 0;
int min = Integer.MAX_VALUE;
while (j < nums.length) {
sum += nums[j];
if (sum >= target) {
while (i <= j) {
if (sum - nums[i] >= target) {
sum = sum - nums[i];
i++;
} else {
break;
}
}
if (j - i + 1 < min) {
min = j - i + 1;
}
}
j++;
}
if (min == Integer.MAX_VALUE) {
return 0;
}
return min;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).