1591. Strange Printer II

Difficulty:
Related Topics:
Similar Questions:

Problem

There is a strange printer with the following two special requirements:

You are given a m x n matrix targetGrid, where targetGrid[row][col] is the color in the position (row, col) of the grid.

Return true** if it is possible to print the matrix targetGrid,**** otherwise, return **false.

  Example 1:

Input: targetGrid = [[1,1,1,1],[1,2,2,1],[1,2,2,1],[1,1,1,1]]
Output: true

Example 2:

Input: targetGrid = [[1,1,1,1],[1,1,3,3],[1,1,3,4],[5,5,1,4]]
Output: true

Example 3:

Input: targetGrid = [[1,2,1],[2,1,2],[1,2,1]]
Output: false
Explanation: It is impossible to form targetGrid because it is not allowed to print the same color in different turns.

  Constraints:

Solution

class Solution {
    public boolean isPrintable(int[][] targetGrid) {
        int[][] colorBound = new int[61][4];
        Set<Integer> colors = new HashSet<>();
        // prepare colorBound with Max and Min integer for later compare
        for (int i = 0; i < colorBound.length; i++) {
            for (int j = 0; j < colorBound[0].length; j++) {
                if (j == 0 || j == 1) {
                    colorBound[i][j] = Integer.MAX_VALUE;
                } else {
                    colorBound[i][j] = Integer.MIN_VALUE;
                }
            }
        }
        // find the color range for each color
        // each color i has a colorBound[i] with {min_i, min_j, max_i, max_j}
        for (int i = 0; i < targetGrid.length; i++) {
            for (int j = 0; j < targetGrid[0].length; j++) {
                colorBound[targetGrid[i][j]][0] = Math.min(colorBound[targetGrid[i][j]][0], i);
                colorBound[targetGrid[i][j]][1] = Math.min(colorBound[targetGrid[i][j]][1], j);
                colorBound[targetGrid[i][j]][2] = Math.max(colorBound[targetGrid[i][j]][2], i);
                colorBound[targetGrid[i][j]][3] = Math.max(colorBound[targetGrid[i][j]][3], j);
                colors.add(targetGrid[i][j]);
            }
        }
        boolean[] printed = new boolean[61];
        boolean[][] visited = new boolean[targetGrid.length][targetGrid[0].length];
        // DFS all the colors, skip the color already be printed
        for (Integer color : colors) {
            if (printed[color]) {
                continue;
            }
            if (!dfs(targetGrid, printed, colorBound, visited, color)) {
                return false;
            }
        }
        // if all color has been printed, then return true
        return true;
    }

    private boolean dfs(
            int[][] targetGrid,
            boolean[] printed,
            int[][] colorBound,
            boolean[][] visited,
            int color) {
        printed[color] = true;
        for (int i = colorBound[color][0]; i <= colorBound[color][2]; i++) {
            for (int j = colorBound[color][1]; j <= colorBound[color][3]; j++) {
                // if i, j is already visited, skip
                if (visited[i][j]) {
                    continue;
                }
                // if we find a different color, then check if the color is already printed, if so,
                // return false
                // otherwise, dfs the range of the new color
                if (targetGrid[i][j] != color) {
                    if (printed[targetGrid[i][j]]) {
                        return false;
                    }
                    if (!dfs(targetGrid, printed, colorBound, visited, targetGrid[i][j])) {
                        return false;
                    }
                }
                visited[i][j] = true;
            }
        }
        return true;
    }
}

Explain:

nope.

Complexity: