Problem
Given an integer array nums
and an integer k
, return true
if it is possible to divide this array into k
non-empty subsets whose sums are all equal.
Example 1:
Input: nums = [4,3,2,3,5,2,1], k = 4
Output: true
Explanation: It is possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Example 2:
Input: nums = [1,2,3,4], k = 3
Output: false
Constraints:
1 <= k <= nums.length <= 16
1 <= nums[i] <= 10^4
The frequency of each element is in the range
[1, 4]
.
Solution (Java)
class Solution {
public boolean canPartitionKSubsets(int[] nums, int k) {
if (nums == null || nums.length == 0) {
return false;
}
int n = nums.length;
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum % k != 0) {
return false;
}
// sum of each subset = sum / k
sum /= k;
int[] dp = new int[1 << n];
Arrays.fill(dp, -1);
dp[0] = 0;
for (int i = 0; i < (1 << n); i++) {
if (dp[i] == -1) {
continue;
}
int rem = sum - (dp[i] % sum);
for (int j = 0; j < n; j++) {
// bitmask
int tmp = i | (1 << j);
// skip if the bit is already taken
if (tmp != i) {
// num too big for current subset
if (nums[j] > rem) {
break;
}
// cumulative sum
dp[tmp] = dp[i] + nums[j];
}
}
}
// true if total sum of all nums is the same
return dp[(1 << n) - 1] == k * sum;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).