Problem
You are given a 0-indexed integer array nums
of length n
. The number of ways to partition nums
is the number of pivot
indices that satisfy both conditions:
1 <= pivot < n
nums[0] + nums[1] + ... + nums[pivot - 1] == nums[pivot] + nums[pivot + 1] + ... + nums[n - 1]
You are also given an integer k
. You can choose to change the value of one element of nums
to k
, or to leave the array unchanged.
Return **the *maximum* possible number of ways to partition nums
to satisfy both conditions after changing at most one element**.
Example 1:
Input: nums = [2,-1,2], k = 3
Output: 1
Explanation: One optimal approach is to change nums[0] to k. The array becomes [3,-1,2].
There is one way to partition the array:
- For pivot = 2, we have the partition [3,-1 | 2]: 3 + -1 == 2.
Example 2:
Input: nums = [0,0,0], k = 1
Output: 2
Explanation: The optimal approach is to leave the array unchanged.
There are two ways to partition the array:
- For pivot = 1, we have the partition [0 | 0,0]: 0 == 0 + 0.
- For pivot = 2, we have the partition [0,0 | 0]: 0 + 0 == 0.
Example 3:
Input: nums = [22,4,-25,-20,-15,15,-16,7,19,-10,0,-13,-14], k = -33
Output: 4
Explanation: One optimal approach is to change nums[2] to k. The array becomes [22,4,-33,-20,-15,15,-16,7,19,-10,0,-13,-14].
There are four ways to partition the array.
Constraints:
n == nums.length
2 <= n <= 10^5
-10^5 <= k, nums[i] <= 10^5
Solution
class Solution {
public int waysToPartition(int[] nums, int k) {
int n = nums.length;
long[] ps = new long[n];
ps[0] = nums[0];
for (int i = 1; i < n; i++) {
ps[i] = ps[i - 1] + nums[i];
}
Map<Long, ArrayList<Integer>> partDiffs = new HashMap<>();
int maxWays = 0;
for (int i = 1; i < n; i++) {
long partL = ps[i - 1];
long partR = ps[n - 1] - partL;
long partDiff = partR - partL;
if (partDiff == 0) {
maxWays++;
}
ArrayList<Integer> idxSet =
partDiffs.computeIfAbsent(partDiff, k1 -> new ArrayList<>());
idxSet.add(i);
}
for (int j = 0; j < n; j++) {
int ways = 0;
long newDiff = (long) k - nums[j];
ArrayList<Integer> leftList = partDiffs.get(newDiff);
if (leftList != null) {
int i = upperBound(leftList, j);
ways += leftList.size() - i;
}
ArrayList<Integer> rightList = partDiffs.get(-newDiff);
if (rightList != null) {
int i = upperBound(rightList, j);
ways += i;
}
maxWays = Math.max(ways, maxWays);
}
return maxWays;
}
private int upperBound(List<Integer> arr, int val) {
int ans = -1;
int n = arr.size();
int l = 0;
int r = n;
while (l <= r) {
int mid = l + (r - l) / 2;
if (mid == n) {
return n;
}
if (arr.get(mid) > val) {
ans = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
return ans;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).