Problem
You may recall that an array arr
is a mountain array if and only if:
arr.length >= 3
There exists some indexi
(0-indexed) with0 < i < arr.length - 1
such that:arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
Given an integer array nums
, return **the *minimum* number of elements to remove to make nums****
****a **mountain array.
Example 1:
Input: nums = [1,3,1]
Output: 0
Explanation: The array itself is a mountain array so we do not need to remove any elements.
Example 2:
Input: nums = [2,1,1,5,6,2,3,1]
Output: 3
Explanation: One solution is to remove the elements at indices 0, 1, and 5, making the array nums = [1,5,6,3,1].
Constraints:
3 <= nums.length <= 1000
1 <= nums[i] <= 10^9
It is guaranteed that you can make a mountain array out of
nums
.
Solution
class Solution {
public int minimumMountainRemovals(int[] nums) {
int n = nums.length;
// lbs -> longest bitomic subsequence
int lbs = 0;
int[] dp = new int[n];
// dp[i] -> lis end at index i, dp2[i] -> lds end at index i
int[] dp2 = new int[n];
List<Integer> lis = new ArrayList<>();
// calculate longest increasing subsequence
for (int i = 0; i < n - 1; i++) {
if (lis.isEmpty() || lis.get(lis.size() - 1) < nums[i]) {
lis.add(nums[i]);
} else {
int idx = Collections.binarySearch(lis, nums[i]);
if (idx < 0) {
lis.set(-idx - 1, nums[i]);
}
}
dp[i] = lis.size();
}
lis = new ArrayList<>();
// calculate longest decreasing subsequence
for (int i = n - 1; i >= 1; i--) {
if (lis.isEmpty() || lis.get(lis.size() - 1) < nums[i]) {
lis.add(nums[i]);
} else {
int idx = Collections.binarySearch(lis, nums[i]);
if (idx < 0) {
lis.set(-idx - 1, nums[i]);
}
}
dp2[i] = lis.size();
if (dp[i] > 1 && dp2[i] > 1) {
lbs = Math.max(lbs, dp[i] + dp2[i] - 1);
}
}
return n - lbs;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).