1671. Minimum Number of Removals to Make Mountain Array

Difficulty:
Related Topics:
Similar Questions:

Problem

You may recall that an array arr is a mountain array if and only if:

Given an integer array nums​​​, return **the *minimum* number of elements to remove to make nums**​​​** ****a **mountain array.

  Example 1:

Input: nums = [1,3,1]
Output: 0
Explanation: The array itself is a mountain array so we do not need to remove any elements.

Example 2:

Input: nums = [2,1,1,5,6,2,3,1]
Output: 3
Explanation: One solution is to remove the elements at indices 0, 1, and 5, making the array nums = [1,5,6,3,1].

  Constraints:

Solution

class Solution {
    public int minimumMountainRemovals(int[] nums) {
        int n = nums.length;
        // lbs -> longest bitomic subsequence
        int lbs = 0;
        int[] dp = new int[n];
        // dp[i] -> lis end at index i, dp2[i] -> lds end at index i
        int[] dp2 = new int[n];
        List<Integer> lis = new ArrayList<>();
        // calculate longest increasing subsequence
        for (int i = 0; i < n - 1; i++) {
            if (lis.isEmpty() || lis.get(lis.size() - 1) < nums[i]) {
                lis.add(nums[i]);
            } else {
                int idx = Collections.binarySearch(lis, nums[i]);
                if (idx < 0) {
                    lis.set(-idx - 1, nums[i]);
                }
            }
            dp[i] = lis.size();
        }
        lis = new ArrayList<>();
        // calculate longest decreasing subsequence
        for (int i = n - 1; i >= 1; i--) {
            if (lis.isEmpty() || lis.get(lis.size() - 1) < nums[i]) {
                lis.add(nums[i]);
            } else {
                int idx = Collections.binarySearch(lis, nums[i]);
                if (idx < 0) {
                    lis.set(-idx - 1, nums[i]);
                }
            }
            dp2[i] = lis.size();
            if (dp[i] > 1 && dp2[i] > 1) {
                lbs = Math.max(lbs, dp[i] + dp2[i] - 1);
            }
        }
        return n - lbs;
    }
}

Explain:

nope.

Complexity: