Problem
You may recall that an array arr
is a mountain array if and only if:
arr.length >= 3
There exists some indexi
(0-indexed) with0 < i < arr.length - 1
such that:arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
Given an integer array arr
, return the length of the longest subarray, which is a mountain. Return 0
if there is no mountain subarray.
Example 1:
Input: arr = [2,1,4,7,3,2,5]
Output: 5
Explanation: The largest mountain is [1,4,7,3,2] which has length 5.
Example 2:
Input: arr = [2,2,2]
Output: 0
Explanation: There is no mountain.
Constraints:
1 <= arr.length <= 10^4
0 <= arr[i] <= 10^4
Follow up:
Can you solve it using only one pass?
Can you solve it in
O(1)
space?
Solution (Java)
class Solution {
public int longestMountain(int[] arr) {
int s = 0;
int i = 1;
while (i < arr.length - 1) {
if (arr[i] > arr[i - 1] && arr[i] > arr[i + 1]) {
int j = i;
int tem = 1;
while (j > 0 && arr[j] > arr[j - 1]) {
j--;
tem++;
}
j = i;
while (j < arr.length - 1 && arr[j] > arr[j + 1]) {
j++;
tem++;
}
s = Math.max(s, tem);
i = j;
}
i++;
}
return s;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).