300. Longest Increasing Subsequence

Difficulty:
Related Topics:
Similar Questions:

Problem

Given an integer array nums, return the length of the longest strictly increasing subsequence.

A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].

  Example 1:

Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

Example 2:

Input: nums = [0,1,0,3,2,3]
Output: 4

Example 3:

Input: nums = [7,7,7,7,7,7,7]
Output: 1

  Constraints:

  Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?

Solution (Java)

class Solution {
    public int lengthOfLIS(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int[] dp = new int[nums.length + 1];
        // prefill the dp table
        for (int i = 1; i < dp.length; i++) {
            dp[i] = Integer.MAX_VALUE;
        }
        int left = 1;
        int right = 1;
        for (int curr : nums) {
            int start = left;
            int end = right;
            // binary search, find the one that is lower than curr
            while (start + 1 < end) {
                int mid = start + (end - start) / 2;
                if (dp[mid] > curr) {
                    end = mid;
                } else {
                    start = mid;
                }
            }
            // update our dp table
            if (dp[start] > curr) {
                dp[start] = curr;
            } else if (curr > dp[start] && curr < dp[end]) {
                dp[end] = curr;
            } else if (curr > dp[end]) {
                dp[++end] = curr;
                right++;
            }
        }
        return right;
    }
}

Solution (Javascript)

/**
 * @param {number[]} nums
 * @return {number}
 */
var lengthOfLIS = function(nums) {
    // Create dp array
    const dp = Array.from(nums, () => 1);
    // Max subsequence length
    let max = 1
    // Check all increasing subsequences up to the current ith number in nums
    for (let i = 1; i < nums.length; i++) {
        // Keep track of subsequence length in the dp array
        for (let j = 0; j < i; j++) {
            // Only change dp value if the numbers are increasing
            if (nums[i] > nums[j]) {
                // Set the value to be the larget subsequence length
                dp[i] = Math.max(dp[i], dp[j] + 1)
                // Check if this subsequence is the largest
                max = Math.max(dp[i], max)
            }
        }
    }
    return max;
};

Explain:

nope.

Complexity: