1289. Minimum Falling Path Sum II

Difficulty:
Related Topics:
Similar Questions:

Problem

Given an n x n integer matrix grid, return **the minimum sum of a *falling path with non-zero shifts***.

A falling path with non-zero shifts is a choice of exactly one element from each row of grid such that no two elements chosen in adjacent rows are in the same column.

  Example 1:

Input: arr = [[1,2,3],[4,5,6],[7,8,9]]
Output: 13
Explanation: 
The possible falling paths are:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
The falling path with the smallest sum is [1,5,7], so the answer is 13.

Example 2:

Input: grid = [[7]]
Output: 7

  Constraints:

Solution

class Solution {
    public int minFallingPathSum(int[][] grid) {
        int n = grid[0].length;
        int[] prev = new int[n];
        int[] curr = new int[n];
        int prevMinOne = 0;
        int prevMinTwo = 0;
        for (int[] ints : grid) {
            int currMinOne = Integer.MAX_VALUE;
            int currMinTwo = Integer.MAX_VALUE;
            for (int j = 0; j < n; j++) {
                int prevMin = prev[j] == prevMinOne ? prevMinTwo : prevMinOne;
                curr[j] = ints[j] + prevMin;
                if (curr[j] < currMinOne) {
                    currMinTwo = currMinOne;
                    currMinOne = curr[j];
                } else if (curr[j] < currMinTwo) {
                    currMinTwo = curr[j];
                }
            }
            prevMinOne = currMinOne;
            prevMinTwo = currMinTwo;
            // reuse curr array, avoid new int[] in every row
            int[] temp = prev;
            prev = curr;
            curr = temp;
        }
        return prevMinOne;
    }
}

Explain:

nope.

Complexity: