Problem
You are given two 0-indexed arrays nums1
and nums2
of length n
, both of which are permutations of [0, 1, ..., n - 1]
.
A good triplet is a set of 3
distinct values which are present in increasing order by position both in nums1
and nums2
. In other words, if we consider pos1v
as the index of the value v
in nums1
and pos2v
as the index of the value v
in nums2
, then a good triplet will be a set (x, y, z)
where 0 <= x, y, z <= n - 1
, such that pos1x < pos1y < pos1z
and pos2x < pos2y < pos2z
.
Return **the *total number* of good triplets**.
Example 1:
Input: nums1 = [2,0,1,3], nums2 = [0,1,2,3]
Output: 1
Explanation:
There are 4 triplets (x,y,z) such that pos1x < pos1y < pos1z. They are (2,0,1), (2,0,3), (2,1,3), and (0,1,3).
Out of those triplets, only the triplet (0,1,3) satisfies pos2x < pos2y < pos2z. Hence, there is only 1 good triplet.
Example 2:
Input: nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
Output: 4
Explanation: The 4 good triplets are (4,0,3), (4,0,2), (4,1,3), and (4,1,2).
Constraints:
n == nums1.length == nums2.length
3 <= n <= 10^5
0 <= nums1[i], nums2[i] <= n - 1
nums1
andnums2
are permutations of[0, 1, ..., n - 1]
.
Solution
class Solution {
public long goodTriplets(int[] nums1, int[] nums2) {
int n = nums1.length;
int[] idx = new int[n];
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
idx[nums2[i]] = i;
}
for (int i = 0; i < n; i++) {
arr[i] = idx[nums1[i]];
}
Tree tree = new Tree(n);
long res = 0L;
for (int i = 0; i < n; i++) {
int smaller = tree.query(arr[i]);
int bigger = n - (arr[i] + 1) - (i - smaller);
res += (long) smaller * bigger;
tree.update(arr[i] + 1, 1);
}
return res;
}
private static class Tree {
int[] array;
int n;
public Tree(int n) {
this.n = n;
array = new int[n + 1];
}
int lowbit(int x) {
return x & (-x);
}
void update(int i, int delta) {
while (i <= n) {
array[i] += delta;
i += lowbit(i);
}
}
int query(int k) {
int ans = 0;
while (k > 0) {
ans += array[k];
k -= lowbit(k);
}
return ans;
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).