741. Cherry Pickup

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given an n x n grid representing a field of cherries, each cell is one of three possible integers.

Return the maximum number of cherries you can collect by following the rules below:

  Example 1:

Input: grid = [[0,1,-1],[1,0,-1],[1,1,1]]
Output: 5
Explanation: The player started at (0, 0) and went down, down, right right to reach (2, 2).
4 cherries were picked up during this single trip, and the matrix becomes [[0,1,-1],[0,0,-1],[0,0,0]].
Then, the player went left, up, up, left to return home, picking up one more cherry.
The total number of cherries picked up is 5, and this is the maximum possible.

Example 2:

Input: grid = [[1,1,-1],[1,-1,1],[-1,1,1]]
Output: 0

  Constraints:

Solution (Java)

class Solution {
    public int cherryPickup(int[][] grid) {
        int[][][] dp = new int[grid.length][grid.length][grid.length];
        int ans = solve(0, 0, 0, grid, dp);
        return Math.max(ans, 0);
    }

    private int solve(int r1, int c1, int r2, int[][] arr, int[][][] dp) {
        int c2 = r1 + c1 - r2;
        if (r1 >= arr.length
                || r2 >= arr.length
                || c1 >= arr[0].length
                || c2 >= arr[0].length
                || arr[r1][c1] == -1
                || arr[r2][c2] == -1) {
            return Integer.MIN_VALUE;
        }

        if (r1 == arr.length - 1 && c1 == arr[0].length - 1) {
            return arr[r1][c1];
        }

        if (dp[r1][c1][r2] != 0) {
            return dp[r1][c1][r2];
        }

        int cherries = 0;
        if (r1 == r2 && c1 == c2) {
            cherries += arr[r1][c1];
        } else {
            cherries += arr[r1][c1] + arr[r2][c2];
        }

        int a = solve(r1, c1 + 1, r2, arr, dp);
        int b = solve(r1 + 1, c1, r2 + 1, arr, dp);
        int c = solve(r1, c1 + 1, r2 + 1, arr, dp);
        int d = solve(r1 + 1, c1, r2, arr, dp);

        cherries += Math.max(Math.max(a, b), Math.max(c, d));
        dp[r1][c1][r2] = cherries;
        return cherries;
    }
}

Solution (C++)

class Solution {
public:
    int cherryPickup(vector<vector<int>>& grid) {
        const int n = grid.size();
        grid_ = &grid;
        m_ = vector<vector<vector<int>>>(
                n, vector<vector<int>>(n, vector<int>(n, INT_MIN)));
        return max(0, dp(n - 1, n - 1, n - 1));
    }
private:
    // max cherries from (x1, y1) to (0, 0) + (x2, y2) to (0, 0)
    int dp(int x1, int y1, int x2) {
        const int y2 = x1 + y1 - x2;
        if (x1 < 0 || y1 < 0 || x2 < 0 || y2 < 0) return -1;
        if ((*grid_)[y1][x1] < 0 || (*grid_)[y2][x2] < 0) return -1;
        if (x1 == 0 && y1 == 0) return (*grid_)[y1][x1];
        if (m_[x1][y1][x2] != INT_MIN) return m_[x1][y1][x2];        
        int ans =  max(max(dp(x1 - 1, y1, x2 - 1), dp(x1, y1 - 1, x2)),
                       max(dp(x1, y1 - 1, x2 - 1), dp(x1 - 1, y1, x2)));
        if (ans < 0) return m_[x1][y1][x2] = -1;
        ans += (*grid_)[y1][x1];
        if (x1 != x2) ans += (*grid_)[y2][x2];

        return m_[x1][y1][x2] = ans;
    }

    vector<vector<vector<int>>> m_;
    vector<vector<int>>* grid_; // does not own the object
};

Explain:

nope.

Complexity: