Problem
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
Solution (Java)
class Solution {
public int minPathSum(int[][] grid) {
if (grid.length == 1 && grid[0].length == 1) {
return grid[0][0];
}
int[][] dm = new int[grid.length][grid[0].length];
int s = 0;
for (int r = grid.length - 1; r >= 0; r--) {
dm[r][grid[0].length - 1] = grid[r][grid[0].length - 1] + s;
s += grid[r][grid[0].length - 1];
}
s = 0;
for (int c = grid[0].length - 1; c >= 0; c--) {
dm[grid.length - 1][c] = grid[grid.length - 1][c] + s;
s += grid[grid.length - 1][c];
}
return recur(grid, dm, 0, 0);
}
private int recur(int[][] grid, int[][] dm, int r, int c) {
if (dm[r][c] == 0 && r != grid.length - 1 && c != grid[0].length - 1) {
dm[r][c] = grid[r][c] + Math.min(recur(grid, dm, r + 1, c), recur(grid, dm, r, c + 1));
}
return dm[r][c];
}
}
Solution (Javascript)
/**
* @param {number[][]} grid
* @return {number}
*/
var minPathSum = function(grid) {
var m = grid.length;
var n = (grid[0] || []).length;
var dp = Array(m);
var left = 0;
var top = 0;
if (!m || !n) return 0;
for (var i = 0; i < m; i++) {
dp[i] = Array(n);
for (var j = 0; j < n; j++) {
top = i === 0 ? Number.MAX_SAFE_INTEGER : dp[i - 1][j];
left = j === 0 ? Number.MAX_SAFE_INTEGER : dp[i][j - 1];
dp[i][j] = grid[i][j] + (i === 0 && j === 0 ? 0 : Math.min(left, top));
}
}
return dp[m - 1][n - 1];
};
Explain:
dp[i][j]
代表到达此位置的最小 sum
。
dp[i][j] = min(dp[i - 1][j] + dp[i][j - 1]) + grid[i][j]
;
Complexity:
- Time complexity : O(m*n).
- Space complexity : O(m*n).