Problem
Given an n x n
grid
containing only values 0
and 1
, where 0
represents water and 1
represents land, find a water cell such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in the grid, return -1
.
The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0)
and (x1, y1)
is |x0 - x1| + |y0 - y1|
.
Example 1:
Input: grid = [[1,0,1],[0,0,0],[1,0,1]]
Output: 2
Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.
Example 2:
Input: grid = [[1,0,0],[0,0,0],[0,0,0]]
Output: 4
Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.
Constraints:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j]
is0
or1
Solution (Java)
class Solution {
public int maxDistance(int[][] grid) {
Queue<int[]> q = new LinkedList<>();
int n = grid.length;
int m = grid[0].length;
boolean[][] vis = new boolean[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) {
q.add(new int[] {i, j});
vis[i][j] = true;
}
}
}
if (q.isEmpty() || q.size() == n * m) {
return -1;
}
int[] dir = {-1, 0, 1, 0, -1};
int maxDistance = 0;
int level = 1;
while (!q.isEmpty()) {
int size = q.size();
for (int i = 0; i < size; i++) {
int[] top = q.poll();
int currX = Objects.requireNonNull(top)[0];
int currY = top[1];
for (int j = 0; j < dir.length - 1; j++) {
int x = currX + dir[j];
int y = currY + dir[j + 1];
if (x >= 0 && x != n && y >= 0 && y != n && !vis[x][y]) {
maxDistance = Math.max(maxDistance, level);
vis[x][y] = true;
q.add(new int[] {x, y});
}
}
}
level++;
}
return maxDistance;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).