1582. Special Positions in a Binary Matrix

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given an m x n binary matrix mat, return **the number of special positions in **mat.

    A position (i, j) is called special if mat[i][j] == 1 and all other elements in row i and column j are 0 (rows and columns are 0-indexed).

      Example 1:

    Input: mat = [[1,0,0],[0,0,1],[1,0,0]]
    Output: 1
    Explanation: (1, 2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.
    

    Example 2:

    Input: mat = [[1,0,0],[0,1,0],[0,0,1]]
    Output: 3
    Explanation: (0, 0), (1, 1) and (2, 2) are special positions.
    

      Constraints:

    Solution (Java)

    class Solution {
        public int numSpecial(int[][] mat) {
            int count = 0;
            for (int i = 0; i < mat.length; i++) {
                for (int j = 0; j < mat[0].length; j++) {
                    if (mat[i][j] == 1 && isSpecial(mat, i, j)) {
                        count++;
                    }
                }
            }
            return count;
        }
    
        private boolean isSpecial(int[][] mat, int row, int col) {
            for (int i = 0; i < mat.length; i++) {
                if (i != row && mat[i][col] == 1) {
                    return false;
                }
            }
            for (int j = 0; j < mat[0].length; j++) {
                if (j != col && mat[row][j] == 1) {
                    return false;
                }
            }
            return true;
        }
    }
    

    Explain:

    nope.

    Complexity: