2411. Smallest Subarrays With Maximum Bitwise OR

Difficulty:
Related Topics:
    Similar Questions:

    Problem

    You are given a 0-indexed array nums of length n, consisting of non-negative integers. For each index i from 0 to n - 1, you must determine the size of the minimum sized non-empty subarray of nums starting at i (inclusive) that has the maximum possible bitwise OR.

    The bitwise OR of an array is the bitwise OR of all the numbers in it.

    Return **an integer array *answer* of size n where answer[i] is the length of the minimum sized subarray starting at i with maximum bitwise OR.**

    A subarray is a contiguous non-empty sequence of elements within an array.

      Example 1:

    Input: nums = [1,0,2,1,3]
    Output: [3,3,2,2,1]
    Explanation:
    The maximum possible bitwise OR starting at any index is 3. 
    - Starting at index 0, the shortest subarray that yields it is [1,0,2].
    - Starting at index 1, the shortest subarray that yields the maximum bitwise OR is [0,2,1].
    - Starting at index 2, the shortest subarray that yields the maximum bitwise OR is [2,1].
    - Starting at index 3, the shortest subarray that yields the maximum bitwise OR is [1,3].
    - Starting at index 4, the shortest subarray that yields the maximum bitwise OR is [3].
    Therefore, we return [3,3,2,2,1]. 
    

    Example 2:

    Input: nums = [1,2]
    Output: [2,1]
    Explanation:
    Starting at index 0, the shortest subarray that yields the maximum bitwise OR is of length 2.
    Starting at index 1, the shortest subarray that yields the maximum bitwise OR is of length 1.
    Therefore, we return [2,1].
    

      Constraints:

    Solution (Java)

    class Solution {
        public int[] smallestSubarrays(int[] nums) {
            TreeSet<Integer>[] ar = new TreeSet[32];
            for (int i = 0; i < 32; i++) ar[i] = new TreeSet<>();
            for (int i = 0; i < nums.length; i++) {
                for (int j = 0; j < 32; j++) {
                    if ((nums[i] >> j & 1) == 1) ar[j].add(i);
                }
            }
            int ans[] = new int[nums.length];
            for (int i = 0; i < nums.length; i++) {
                int max = i;
                for (TreeSet<Integer> set : ar) {
                    if (!set.isEmpty()) {
                        max = Math.max(max, set.first());
                        set.remove(i);
                    }
                }
                ans[i] = (max - i + 1);
            }
            return ans;
        }
    }
    

    Explain:

    nope.

    Complexity: