898. Bitwise ORs of Subarrays

Difficulty:
Related Topics:
Similar Questions:

Problem

We have an array arr of non-negative integers.

For every (contiguous) subarray sub = [arr[i], arr[i + 1], ..., arr[j]] (with i <= j), we take the bitwise OR of all the elements in sub, obtaining a result arr[i] | arr[i + 1] | ... | arr[j].

Return the number of possible results. Results that occur more than once are only counted once in the final answer

  Example 1:

Input: arr = [0]
Output: 1
Explanation: There is only one possible result: 0.

Example 2:

Input: arr = [1,1,2]
Output: 3
Explanation: The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2].
These yield the results 1, 1, 2, 1, 3, 3.
There are 3 unique values, so the answer is 3.

Example 3:

Input: arr = [1,2,4]
Output: 6
Explanation: The possible results are 1, 2, 3, 4, 6, and 7.

  Constraints:

Solution (Java)

class Solution {
    public int subarrayBitwiseORs(int[] arr) {
        Set<Integer> set = new HashSet<>();
        for (int i = 0; i < arr.length; i++) {
            set.add(arr[i]);
            for (int j = i - 1; j >= 0; j--) {
                if ((arr[i] | arr[j]) == arr[j]) {
                    break;
                }
                arr[j] |= arr[i];
                set.add(arr[j]);
            }
        }
        return set.size();
    }
}

Explain:

nope.

Complexity: