Problem
You are given an array of integers nums
, there is a sliding window of size k
which is moving from the very left of the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Example 2:
Input: nums = [1], k = 1
Output: [1]
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
1 <= k <= nums.length
Solution 1
/**
* @param {number[]} nums
* @param {number} k
* @return {number[]}
*/
var maxSlidingWindow = function(nums, k) {
// corner case
if (nums === null || nums.length === 0) {
return [0];
}
// normal case
let queue = [];
let res = new Array(nums.length + 1 - k);
for (let i = 0; i < nums.length; i++) {
if (queue.length && queue[0] === i - k) {
queue.shift();
}
while (queue.length && nums[queue[queue.length - 1]] < nums[i]) {
queue.pop();
}
queue.push(i);
if (i + 1 - k >= 0) {
res[i + 1 - k] = nums[queue[0]];
}
}
return res;
};
Solution (python)
class Solution(object):
def maxSlidingWindow(self, nums, k):
q = deque()
result = []
for i in range(len(nums)):
# the first/left (max) element is out of the current window
if q and i - q[0] == k:
q.popleft()
while q:
# pop useles elements from last of the queue
if nums[q[-1]] < nums[i]:
q.pop()
else:
break
q.append(i)
if i >= k - 1:
result.append(nums[q[0]])
return result
Solution (Java)
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
int n = nums.length;
int[] res = new int[n - k + 1];
int x = 0;
LinkedList<Integer> dq = new LinkedList<>();
int i = 0;
int j = 0;
while (j < nums.length) {
while (!dq.isEmpty() && dq.peekLast() < nums[j]) {
dq.pollLast();
}
dq.addLast(nums[j]);
if (j - i + 1 == k) {
res[x] = dq.peekFirst();
++x;
if (dq.peekFirst() == nums[i]) {
dq.pollFirst();
}
++i;
}
++j;
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).