Problem
You are given an n x n
binary matrix grid
where 1
represents land and 0
represents water.
An island is a 4-directionally connected group of 1
's not connected to any other 1
's. There are exactly two islands in grid
.
You may change 0
's to 1
's to connect the two islands to form one island.
Return **the smallest number of **0
's you must flip to connect the two islands.
Example 1:
Input: grid = [[0,1],[1,0]]
Output: 1
Example 2:
Input: grid = [[0,1,0],[0,0,0],[0,0,1]]
Output: 2
Example 3:
Input: grid = [[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]]
Output: 1
Constraints:
n == grid.length == grid[i].length
2 <= n <= 100
grid[i][j]
is either0
or1
.There are exactly two islands in
grid
.
Solution (Java)
class Solution {
private static class Pair {
int x;
int y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
private int[][] dirs = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
public int shortestBridge(int[][] grid) {
ArrayDeque<Pair> q = new ArrayDeque<>();
boolean flag = false;
boolean[][] visited = new boolean[grid.length][grid[0].length];
for (int i = 0; i < grid.length && !flag; i++) {
for (int j = 0; j < grid[i].length && !flag; j++) {
if (grid[i][j] == 1) {
dfs(grid, i, j, visited, q);
flag = true;
}
}
}
int level = -1;
while (!q.isEmpty()) {
int size = q.size();
level++;
while (size-- > 0) {
Pair rem = q.removeFirst();
for (int[] dir : dirs) {
int newrow = rem.x + dir[0];
int newcol = rem.y + dir[1];
if (newrow >= 0
&& newcol >= 0
&& newrow < grid.length
&& newcol < grid[0].length
&& !visited[newrow][newcol]) {
if (grid[newrow][newcol] == 1) {
return level;
}
q.add(new Pair(newrow, newcol));
visited[newrow][newcol] = true;
}
}
}
}
return -1;
}
private void dfs(int[][] grid, int row, int col, boolean[][] visited, ArrayDeque<Pair> q) {
visited[row][col] = true;
q.add(new Pair(row, col));
for (int[] dir : dirs) {
int newrow = row + dir[0];
int newcol = col + dir[1];
if (newrow >= 0
&& newcol >= 0
&& newrow < grid.length
&& newcol < grid[0].length
&& !visited[newrow][newcol]
&& grid[newrow][newcol] == 1) {
dfs(grid, newrow, newcol, visited, q);
}
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).