Problem
You are given an m x n
binary matrix grid
.
A move consists of choosing any row or column and toggling each value in that row or column (i.e., changing all 0
's to 1
's, and all 1
's to 0
's).
Every row of the matrix is interpreted as a binary number, and the score of the matrix is the sum of these numbers.
Return **the highest possible *score* after making any number of moves (including zero moves)**.
Example 1:
Input: grid = [[0,0,1,1],[1,0,1,0],[1,1,0,0]]
Output: 39
Explanation: 0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39
Example 2:
Input: grid = [[0]]
Output: 1
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 20
grid[i][j]
is either0
or1
.
Solution (Java)
class Solution {
public int matrixScore(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
for (int i = 0; i < m; i++) {
if (grid[i][0] == 0) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 0) {
grid[i][j] = 1;
} else {
grid[i][j] = 0;
}
}
}
}
for (int j = 1; j < n; j++) {
int ones = 0;
for (int[] ints : grid) {
if (ints[j] == 1) {
ones++;
}
}
if (ones <= m / 2) {
for (int i = 0; i < m; i++) {
if (grid[i][j] == 1) {
grid[i][j] = 0;
} else {
grid[i][j] = 1;
}
}
}
}
int result = 0;
for (int[] ints : grid) {
StringBuilder sb = new StringBuilder();
for (int j = 0; j < n; j++) {
sb.append(ints[j]);
}
result += Integer.parseInt(sb.toString(), 2);
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).