Problem
Given the following details of a matrix with n
columns and 2
rows :
The matrix is a binary matrix, which means each element in the matrix can be
0
or1
.The sum of elements of the 0-th(upper) row is given as
upper
.The sum of elements of the 1-st(lower) row is given as
lower
.The sum of elements in the i-th column(0-indexed) is
colsum[i]
, wherecolsum
is given as an integer array with lengthn
.
Your task is to reconstruct the matrix with upper
, lower
and colsum
.
Return it as a 2-D integer array.
If there are more than one valid solution, any of them will be accepted.
If no valid solution exists, return an empty 2-D array.
Example 1:
Input: upper = 2, lower = 1, colsum = [1,1,1]
Output: [[1,1,0],[0,0,1]]
Explanation: [[1,0,1],[0,1,0]], and [[0,1,1],[1,0,0]] are also correct answers.
Example 2:
Input: upper = 2, lower = 3, colsum = [2,2,1,1]
Output: []
Example 3:
Input: upper = 5, lower = 5, colsum = [2,1,2,0,1,0,1,2,0,1]
Output: [[1,1,1,0,1,0,0,1,0,0],[1,0,1,0,0,0,1,1,0,1]]
Constraints:
1 <= colsum.length <= 10^5
0 <= upper, lower <= colsum.length
0 <= colsum[i] <= 2
Solution (Java)
class Solution {
public List<List<Integer>> reconstructMatrix(int upper, int lower, int[] colsum) {
List<List<Integer>> res = new ArrayList<>();
int n = colsum.length;
int[] upperRow = new int[n];
int[] lowerRow = new int[n];
int currentUpperSum = 0;
int currentLowerSum = 0;
for (int i = 0; i < n; i++) {
if (colsum[i] >= 1) {
upperRow[i] = 1;
lowerRow[i] = 1;
currentUpperSum++;
currentLowerSum++;
}
}
for (int i = 0; i < n; i++) {
if (colsum[i] == 1 && currentUpperSum > upper) {
currentUpperSum--;
upperRow[i] = 0;
}
}
for (int i = 0; i < upperRow.length; i++) {
if (colsum[i] == 1 && upperRow[i] == 1) {
currentLowerSum--;
lowerRow[i] = 0;
}
}
if (currentUpperSum != upper || currentLowerSum != lower) {
return res;
}
res.add(new ArrayList<>());
res.add(new ArrayList<>());
for (int i = 0; i < n; i++) {
res.get(0).add(upperRow[i]);
res.get(1).add(lowerRow[i]);
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).