Problem
Given an integer array nums
, handle multiple queries of the following types:
Update the value of an element in
nums
.Calculate the sum of the elements of
nums
between indicesleft
andright
inclusive whereleft <= right
.
Implement the NumArray
class:
NumArray(int[] nums)
Initializes the object with the integer arraynums
.void update(int index, int val)
Updates the value ofnums[index]
to beval
.int sumRange(int left, int right)
Returns the sum of the elements ofnums
between indicesleft
andright
inclusive (i.e.nums[left] + nums[left + 1] + ... + nums[right]
).
Example 1:
Input
["NumArray", "sumRange", "update", "sumRange"]
[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]
Output
[null, 9, null, 8]
Explanation
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // return 1 + 3 + 5 = 9
numArray.update(1, 2); // nums = [1, 2, 5]
numArray.sumRange(0, 2); // return 1 + 2 + 5 = 8
Constraints:
1 <= nums.length <= 3 * 10^4
-100 <= nums[i] <= 100
0 <= index < nums.length
-100 <= val <= 100
0 <= left <= right < nums.length
At most
3 * 10^4
calls will be made toupdate
andsumRange
.
Solution
class NumArray {
private int[] nums;
private int sum;
public NumArray(int[] nums) {
this.nums = nums;
sum = 0;
for (int num : nums) {
sum += num;
}
}
public void update(int index, int val) {
sum -= nums[index] - val;
nums[index] = val;
}
public int sumRange(int left, int right) {
int sumRange = 0;
if ((right - left) < nums.length / 2) {
// Array to sum is less than half
for (int i = left; i <= right; i++) {
sumRange += nums[i];
}
} else {
// Array to sum is more than half
// Better to take total sum and substract the numbers not in range
sumRange = sum;
for (int i = 0; i < left; i++) {
sumRange -= nums[i];
}
for (int i = right + 1; i < nums.length; i++) {
sumRange -= nums[i];
}
}
return sumRange;
}
}
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* obj.update(index,val);
* int param_2 = obj.sumRange(left,right);
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).