304. Range Sum Query 2D - Immutable

Difficulty:
Related Topics:
Similar Questions:

Problem

Given a 2D matrix matrix, handle multiple queries of the following type:

Implement the NumMatrix class:

You must design an algorithm where sumRegion works on O(1) time complexity.

  Example 1:

Input
["NumMatrix", "sumRegion", "sumRegion", "sumRegion"]
[[[[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]], [2, 1, 4, 3], [1, 1, 2, 2], [1, 2, 2, 4]]
Output
[null, 8, 11, 12]

Explanation
NumMatrix numMatrix = new NumMatrix([[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (i.e sum of the red rectangle)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (i.e sum of the green rectangle)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (i.e sum of the blue rectangle)

  Constraints:

Solution

class NumMatrix {
    private int[][] tot;

    public NumMatrix(int[][] matrix) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return;
        }
        // The dimensions of this tot matrix is actually 1 bigger than the given matrix, cool!
        tot = new int[matrix.length + 1][matrix[0].length + 1];
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix[0].length; j++) {
                tot[i + 1][j + 1] = matrix[i][j] + tot[i + 1][j] + tot[i][j + 1] - tot[i][j];
            }
        }
    }

    public int sumRegion(int row1, int col1, int row2, int col2) {
        return tot[row2 + 1][col2 + 1]
                - tot[row2 + 1][col1]
                - tot[row1][col2 + 1]
                + tot[row1][col1];
    }
}

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix obj = new NumMatrix(matrix);
 * int param_1 = obj.sumRegion(row1,col1,row2,col2);
 */

Explain:

nope.

Complexity: