Problem
Design an algorithm that accepts a stream of integers and retrieves the product of the last k
integers of the stream.
Implement the ProductOfNumbers
class:
ProductOfNumbers()
Initializes the object with an empty stream.void add(int num)
Appends the integernum
to the stream.int getProduct(int k)
Returns the product of the lastk
numbers in the current list. You can assume that always the current list has at leastk
numbers.
The test cases are generated so that, at any time, the product of any contiguous sequence of numbers will fit into a single 32-bit integer without overflowing.
Example:
Input
["ProductOfNumbers","add","add","add","add","add","getProduct","getProduct","getProduct","add","getProduct"]
[[],[3],[0],[2],[5],[4],[2],[3],[4],[8],[2]]
Output
[null,null,null,null,null,null,20,40,0,null,32]
Explanation
ProductOfNumbers productOfNumbers = new ProductOfNumbers();
productOfNumbers.add(3); // [3]
productOfNumbers.add(0); // [3,0]
productOfNumbers.add(2); // [3,0,2]
productOfNumbers.add(5); // [3,0,2,5]
productOfNumbers.add(4); // [3,0,2,5,4]
productOfNumbers.getProduct(2); // return 20. The product of the last 2 numbers is 5 * 4 = 20
productOfNumbers.getProduct(3); // return 40. The product of the last 3 numbers is 2 * 5 * 4 = 40
productOfNumbers.getProduct(4); // return 0. The product of the last 4 numbers is 0 * 2 * 5 * 4 = 0
productOfNumbers.add(8); // [3,0,2,5,4,8]
productOfNumbers.getProduct(2); // return 32. The product of the last 2 numbers is 4 * 8 = 32
Constraints:
0 <= num <= 100
1 <= k <= 4 * 10^4
At most
4 * 10^4
calls will be made toadd
andgetProduct
.The product of the stream at any point in time will fit in a 32-bit integer.
Solution (Java)
class ProductOfNumbers {
List<Integer> prod;
int p = 1;
public ProductOfNumbers() {
prod = new ArrayList();
prod.add(1);
}
public void add(int num) {
if (num == 0) {
p = 1;
prod = new ArrayList();
prod.add(1);
} else {
p *= num;
prod.add(p);
}
}
public int getProduct(int k) {
if (k >= prod.size()) {
return 0;
}
int last = prod.get(prod.size() - 1);
int prev = prod.get(prod.size() - 1 - k);
return last / prev;
}
}
/**
* Your ProductOfNumbers object will be instantiated and called as such:
* ProductOfNumbers obj = new ProductOfNumbers();
* obj.add(num);
* int param_2 = obj.getProduct(k);
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).