Problem
Design a data structure that efficiently finds the majority element of a given subarray.
The majority element of a subarray is an element that occurs threshold
times or more in the subarray.
Implementing the MajorityChecker
class:
MajorityChecker(int[] arr)
Initializes the instance of the class with the given arrayarr
.int query(int left, int right, int threshold)
returns the element in the subarrayarr[left...right]
that occurs at leastthreshold
times, or-1
if no such element exists.
Example 1:
Input
["MajorityChecker", "query", "query", "query"]
[[[1, 1, 2, 2, 1, 1]], [0, 5, 4], [0, 3, 3], [2, 3, 2]]
Output
[null, 1, -1, 2]
Explanation
MajorityChecker majorityChecker = new MajorityChecker([1, 1, 2, 2, 1, 1]);
majorityChecker.query(0, 5, 4); // return 1
majorityChecker.query(0, 3, 3); // return -1
majorityChecker.query(2, 3, 2); // return 2
Constraints:
1 <= arr.length <= 2 * 10^4
1 <= arr[i] <= 2 * 10^4
0 <= left <= right < arr.length
threshold <= right - left + 1
2 * threshold > right - left + 1
At most
10^4
calls will be made toquery
.
Solution
class MajorityChecker {
private final Map<Integer, List<Integer>> valToInd;
private static final int NUM_OF_BITS = 15;
private final int[][] bitCount;
public MajorityChecker(int[] arr) {
valToInd = new HashMap<>();
bitCount = new int[arr.length + 1][NUM_OF_BITS];
for (int i = 0; i < arr.length; i++) {
int val = arr[i];
List<Integer> indList = valToInd.computeIfAbsent(val, k -> new ArrayList<>());
indList.add(i);
for (int j = 0; j < NUM_OF_BITS; j++) {
bitCount[i + 1][j] = bitCount[i][j] + (val & 1);
val >>= 1;
}
}
}
public int query(int left, int right, int threshold) {
int candidateVal = 0;
for (int i = NUM_OF_BITS - 1; i >= 0; i--) {
int curBit = bitCount[right + 1][i] - bitCount[left][i] >= threshold ? 1 : 0;
candidateVal = (candidateVal << 1) + curBit;
}
List<Integer> indList = valToInd.get(candidateVal);
if (indList == null || indList.size() < threshold) {
return -1;
}
int indOfLeft = Collections.binarySearch(indList, left);
if (indOfLeft < 0) {
indOfLeft = -indOfLeft - 1;
}
int indOfRight = Collections.binarySearch(indList, right);
if (indOfRight < 0) {
indOfRight = -indOfRight - 2;
}
if (indOfRight - indOfLeft + 1 >= threshold) {
return candidateVal;
} else {
return -1;
}
}
}
/**
* Your MajorityChecker object will be instantiated and called as such:
* MajorityChecker obj = new MajorityChecker(arr);
* int param_1 = obj.query(left,right,threshold);
*/
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).