Problem
You have n
dice and each die has k
faces numbered from 1
to k
.
Given three integers n
, k
, and target
, return **the number of possible ways (out of the *kn
* total ways) ****to roll the dice so the sum of the face-up numbers equals **target
. Since the answer may be too large, return it modulo 10^9 + 7
.
Example 1:
Input: n = 1, k = 6, target = 3
Output: 1
Explanation: You throw one die with 6 faces.
There is only one way to get a sum of 3.
Example 2:
Input: n = 2, k = 6, target = 7
Output: 6
Explanation: You throw two dice, each with 6 faces.
There are 6 ways to get a sum of 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1.
Example 3:
Input: n = 30, k = 30, target = 500
Output: 222616187
Explanation: The answer must be returned modulo 10^9 + 7.
Constraints:
1 <= n, k <= 30
1 <= target <= 1000
Solution (Java)
class Solution {
private int[][] memo;
private int k;
private int dp(int diceLeft, int targetLeft) {
if (diceLeft == 0) {
if (targetLeft == 0) {
return 1;
}
return 0;
}
if (memo[diceLeft][targetLeft] == -1) {
int res = 0;
for (int i = 1; i <= Math.min(k, targetLeft); i++) {
res += dp(diceLeft - 1, targetLeft - i);
int modulo = 1000000007;
res %= modulo;
}
memo[diceLeft][targetLeft] = res;
}
return memo[diceLeft][targetLeft];
}
public int numRollsToTarget(int n, int k, int target) {
this.k = k;
this.memo = new int[n + 1][target + 1];
for (int[] i : memo) {
Arrays.fill(i, -1);
}
return dp(n, target);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).