Problem
You are given two arrays of integers nums1
and nums2
, possibly of different lengths. The values in the arrays are between 1
and 6
, inclusive.
In one operation, you can change any integer's value in **any **of the arrays to any value between 1
and 6
, inclusive.
Return **the minimum number of operations required to make the sum of values in *nums1
* equal to the sum of values in nums2
.** Return -1
if it is not possible to make the sum of the two arrays equal.
Example 1:
Input: nums1 = [1,2,3,4,5,6], nums2 = [1,1,2,2,2,2]
Output: 3
Explanation: You can make the sums of nums1 and nums2 equal with 3 operations. All indices are 0-indexed.
- Change nums2[0] to 6. nums1 = [1,2,3,4,5,6], nums2 = [6,1,2,2,2,2].
- Change nums1[5] to 1. nums1 = [1,2,3,4,5,1], nums2 = [6,1,2,2,2,2].
- Change nums1[2] to 2. nums1 = [1,2,2,4,5,1], nums2 = [6,1,2,2,2,2].
Example 2:
Input: nums1 = [1,1,1,1,1,1,1], nums2 = [6]
Output: -1
Explanation: There is no way to decrease the sum of nums1 or to increase the sum of nums2 to make them equal.
Example 3:
Input: nums1 = [6,6], nums2 = [1]
Output: 3
Explanation: You can make the sums of nums1 and nums2 equal with 3 operations. All indices are 0-indexed.
- Change nums1[0] to 2. nums1 = [2,6], nums2 = [1].
- Change nums1[1] to 2. nums1 = [2,2], nums2 = [1].
- Change nums2[0] to 4. nums1 = [2,2], nums2 = [4].
Constraints:
1 <= nums1.length, nums2.length <= 10^5
1 <= nums1[i], nums2[i] <= 6
Solution (Java)
class Solution {
public int minOperations(int[] nums1, int[] nums2) {
int[] longer = nums1.length > nums2.length ? nums1 : nums2;
int[] shorter = nums1.length > nums2.length ? nums2 : nums1;
if (longer.length > shorter.length * 6) {
return -1;
}
Arrays.sort(longer);
Arrays.sort(shorter);
int i = 0;
int j = 0;
int diff = 0;
while (i < longer.length || j < shorter.length) {
if (i < longer.length) {
diff += longer[i++];
}
if (j < shorter.length) {
diff -= shorter[j++];
}
}
int minOps = 0;
i = 0;
j = shorter.length - 1;
if (diff < 0) {
while (diff < 0) {
if (i < longer.length && j >= 0) {
if (6 - longer[i] < shorter[j] - 1) {
diff += shorter[j--] - 1;
} else {
diff += 6 - longer[i++];
}
} else if (i < longer.length) {
diff += 6 - longer[i++];
} else {
diff += shorter[j--] - 1;
}
minOps++;
}
return minOps;
} else if (diff > 0) {
i = longer.length - 1;
j = 0;
while (diff > 0) {
if (i >= 0 && j < shorter.length) {
if (longer[i] - 1 > 6 - shorter[j]) {
diff -= longer[i--] - 1;
} else {
diff -= 6 - shorter[j++];
}
} else if (i >= 0) {
diff -= longer[i--] - 1;
} else {
diff -= 6 - shorter[j++];
}
minOps++;
}
return minOps;
} else {
return minOps;
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).