Problem
Given an n x n
binary grid
, in one step you can choose two adjacent rows of the grid and swap them.
A grid is said to be valid if all the cells above the main diagonal are zeros.
Return the minimum number of steps needed to make the grid valid, or -1 if the grid cannot be valid.
The main diagonal of a grid is the diagonal that starts at cell (1, 1)
and ends at cell (n, n)
.
Example 1:
Input: grid = [[0,0,1],[1,1,0],[1,0,0]]
Output: 3
Example 2:
Input: grid = [[0,1,1,0],[0,1,1,0],[0,1,1,0],[0,1,1,0]]
Output: -1
Explanation: All rows are similar, swaps have no effect on the grid.
Example 3:
Input: grid = [[1,0,0],[1,1,0],[1,1,1]]
Output: 0
Constraints:
n == grid.length
== grid[i].length
1 <= n <= 200
grid[i][j]
is either0
or1
Solution (Java)
class Solution {
public int minSwaps(int[][] grid) {
int len = grid.length;
int swap = 0;
int[] preProcess = new int[len];
for (int i = 0; i < len; i++) {
preProcess[i] = countRightZeros(grid[i]);
}
for (int i = 0; i < len; i++) {
int minValueRequired = len - i - 1;
int j = i;
while (j < len && preProcess[j] < minValueRequired) {
j++;
}
if (j == len) {
return -1;
}
while (j != i) {
swap++;
int temp = preProcess[j];
preProcess[j] = preProcess[j - 1];
preProcess[j - 1] = temp;
j--;
}
}
return swap;
}
private int countRightZeros(int[] row) {
int cnt = 0;
for (int i = row.length - 1; i >= 0; i--) {
if (row[i] != 0) {
break;
}
cnt++;
}
return cnt;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).