2170. Minimum Operations to Make the Array Alternating

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given a 0-indexed array nums consisting of n positive integers.

The array nums is called alternating if:

In one operation, you can choose an index i and change nums[i] into any positive integer.

Return **the *minimum number of operations* required to make the array alternating**.

  Example 1:

Input: nums = [3,1,3,2,4,3]
Output: 3
Explanation:
One way to make the array alternating is by converting it to [3,1,3,1,3,1].
The number of operations required in this case is 3.
It can be proven that it is not possible to make the array alternating in less than 3 operations. 

Example 2:

Input: nums = [1,2,2,2,2]
Output: 2
Explanation:
One way to make the array alternating is by converting it to [1,2,1,2,1].
The number of operations required in this case is 2.
Note that the array cannot be converted to [2,2,2,2,2] because in this case nums[0] == nums[1] which violates the conditions of an alternating array.

  Constraints:

Solution (Java)

class Solution {
    public int minimumOperations(int[] nums) {
        int maxOdd = 0;
        int maxEven = 0;
        int max = 0;
        int n = nums.length;
        for (int num : nums) {
            max = Math.max(max, num);
        }
        int[] even = new int[max + 1];
        int[] odd = new int[max + 1];
        for (int i = 0; i < n; i++) {
            if (i % 2 == 0) {
                even[nums[i]]++;
            } else {
                odd[nums[i]]++;
            }
        }
        int t1 = 0;
        int t2 = 0;
        for (int i = 0; i < max + 1; i++) {
            if (even[i] > maxEven) {
                maxEven = even[i];
                t1 = i;
            }
            if (odd[i] > maxOdd) {
                maxOdd = odd[i];
                t2 = i;
            }
        }
        int ans;
        if (t1 == t2) {
            int secondEven = 0;
            int secondOdd = 0;
            for (int i = 0; i < max + 1; i++) {
                if (i != t1 && even[i] > secondEven) {
                    secondEven = even[i];
                }
                if (i != t2 && odd[i] > secondOdd) {
                    secondOdd = odd[i];
                }
            }
            ans =
                    Math.min(
                            (n / 2 + n % 2 - maxEven) + (n / 2 - secondOdd),
                            (n / 2 + n % 2 - secondEven) + (n / 2 - maxOdd));
        } else {
            ans = n / 2 + n % 2 - maxEven + n / 2 - maxOdd;
        }
        return ans;
    }
}

Explain:

nope.

Complexity: