Problem
You are given a 0-indexed array nums
consisting of n
positive integers.
The array nums
is called alternating if:
nums[i - 2] == nums[i]
, where2 <= i <= n - 1
.nums[i - 1] != nums[i]
, where1 <= i <= n - 1
.
In one operation, you can choose an index i
and change nums[i]
into any positive integer.
Return **the *minimum number of operations* required to make the array alternating**.
Example 1:
Input: nums = [3,1,3,2,4,3]
Output: 3
Explanation:
One way to make the array alternating is by converting it to [3,1,3,1,3,1].
The number of operations required in this case is 3.
It can be proven that it is not possible to make the array alternating in less than 3 operations.
Example 2:
Input: nums = [1,2,2,2,2]
Output: 2
Explanation:
One way to make the array alternating is by converting it to [1,2,1,2,1].
The number of operations required in this case is 2.
Note that the array cannot be converted to [2,2,2,2,2] because in this case nums[0] == nums[1] which violates the conditions of an alternating array.
Constraints:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^5
Solution (Java)
class Solution {
public int minimumOperations(int[] nums) {
int maxOdd = 0;
int maxEven = 0;
int max = 0;
int n = nums.length;
for (int num : nums) {
max = Math.max(max, num);
}
int[] even = new int[max + 1];
int[] odd = new int[max + 1];
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
even[nums[i]]++;
} else {
odd[nums[i]]++;
}
}
int t1 = 0;
int t2 = 0;
for (int i = 0; i < max + 1; i++) {
if (even[i] > maxEven) {
maxEven = even[i];
t1 = i;
}
if (odd[i] > maxOdd) {
maxOdd = odd[i];
t2 = i;
}
}
int ans;
if (t1 == t2) {
int secondEven = 0;
int secondOdd = 0;
for (int i = 0; i < max + 1; i++) {
if (i != t1 && even[i] > secondEven) {
secondEven = even[i];
}
if (i != t2 && odd[i] > secondOdd) {
secondOdd = odd[i];
}
}
ans =
Math.min(
(n / 2 + n % 2 - maxEven) + (n / 2 - secondOdd),
(n / 2 + n % 2 - secondEven) + (n / 2 - maxOdd));
} else {
ans = n / 2 + n % 2 - maxEven + n / 2 - maxOdd;
}
return ans;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).