1888. Minimum Number of Flips to Make the Binary String Alternating

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given a binary string s. You are allowed to perform two types of operations on the string in any sequence:

Return **the *minimum* number of type-2 operations you need to perform** **such that **s **becomes **alternating.

The string is called alternating if no two adjacent characters are equal.

  Example 1:

Input: s = "111000"
Output: 2
Explanation: Use the first operation two times to make s = "100011".
Then, use the second operation on the third and sixth elements to make s = "101010".

Example 2:

Input: s = "010"
Output: 0
Explanation: The string is already alternating.

Example 3:

Input: s = "1110"
Output: 1
Explanation: Use the second operation on the second element to make s = "1010".

  Constraints:

Solution (Java)

class Solution {
    public int minFlips(String s) {
        int n = s.length();
        String localStr = s + s;
        char[] t = localStr.toCharArray();
        char[] a = new char[n + n];
        char[] b = new char[n + n];
        for (int i = 0; i < n + n; i++) {
            if (i % 2 == 0) {
                a[i] = '1';
                b[i] = '0';
            } else {
                a[i] = '0';
                b[i] = '1';
            }
        }
        int f = 0;
        int sec = 0;
        int ans = Integer.MAX_VALUE;
        for (int i = 0; i < n + n; i++) {
            if (a[i] != t[i]) {
                f++;
            }
            if (b[i] != t[i]) {
                sec++;
            }
            if (i >= n) {
                if (a[i - n] != t[i - n]) {
                    f--;
                }
                if (b[i - n] != t[i - n]) {
                    sec--;
                }
            }
            if (i >= n - 1) {
                ans = Math.min(ans, Math.min(f, sec));
            }
        }
        return ans;
    }
}

Explain:

nope.

Complexity: