Problem
You are given a binary array nums
and an integer k
.
A k-bit flip is choosing a subarray of length k
from nums
and simultaneously changing every 0
in the subarray to 1
, and every 1
in the subarray to 0
.
Return **the minimum number of *k-bit flips* required so that there is no 0
in the array**. If it is not possible, return -1
.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [0,1,0], k = 1
Output: 2
Explanation: Flip nums[0], then flip nums[2].
Example 2:
Input: nums = [1,1,0], k = 2
Output: -1
Explanation: No matter how we flip subarrays of size 2, we cannot make the array become [1,1,1].
Example 3:
Input: nums = [0,0,0,1,0,1,1,0], k = 3
Output: 3
Explanation:
Flip nums[0],nums[1],nums[2]: nums becomes [1,1,1,1,0,1,1,0]
Flip nums[4],nums[5],nums[6]: nums becomes [1,1,1,1,1,0,0,0]
Flip nums[5],nums[6],nums[7]: nums becomes [1,1,1,1,1,1,1,1]
Constraints:
1 <= nums.length <= 10^5
1 <= k <= nums.length
Solution
class Solution {
public int minKBitFlips(int[] nums, int k) {
int n = nums.length;
int[] pref = new int[n];
for (int i = 0; i < n; i++) {
if (i == 0) {
if (nums[i] == 0) {
pref[i]++;
}
} else {
pref[i] = pref[i - 1];
int flips = pref[i] - (i - k >= 0 ? pref[i - k] : 0);
if (flips % 2 == nums[i]) {
if (i + k > n) {
return -1;
}
pref[i]++;
}
}
}
return pref[n - 1];
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).