995. Minimum Number of K Consecutive Bit Flips

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given a binary array nums and an integer k.

A k-bit flip is choosing a subarray of length k from nums and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.

Return **the minimum number of *k-bit flips* required so that there is no 0 in the array**. If it is not possible, return -1.

A subarray is a contiguous part of an array.

  Example 1:

Input: nums = [0,1,0], k = 1
Output: 2
Explanation: Flip nums[0], then flip nums[2].

Example 2:

Input: nums = [1,1,0], k = 2
Output: -1
Explanation: No matter how we flip subarrays of size 2, we cannot make the array become [1,1,1].

Example 3:

Input: nums = [0,0,0,1,0,1,1,0], k = 3
Output: 3
Explanation: 
Flip nums[0],nums[1],nums[2]: nums becomes [1,1,1,1,0,1,1,0]
Flip nums[4],nums[5],nums[6]: nums becomes [1,1,1,1,1,0,0,0]
Flip nums[5],nums[6],nums[7]: nums becomes [1,1,1,1,1,1,1,1]

  Constraints:

Solution

class Solution {
    public int minKBitFlips(int[] nums, int k) {
        int n = nums.length;
        int[] pref = new int[n];
        for (int i = 0; i < n; i++) {
            if (i == 0) {
                if (nums[i] == 0) {
                    pref[i]++;
                }
            } else {
                pref[i] = pref[i - 1];
                int flips = pref[i] - (i - k >= 0 ? pref[i - k] : 0);
                if (flips % 2 == nums[i]) {
                    if (i + k > n) {
                        return -1;
                    }
                    pref[i]++;
                }
            }
        }
        return pref[n - 1];
    }
}

Explain:

nope.

Complexity: