Problem
Given an integer array nums
of size n
, return the minimum number of moves required to make all array elements equal.
In one move, you can increment n - 1
elements of the array by 1
.
Example 1:
Input: nums = [1,2,3]
Output: 3
Explanation: Only three moves are needed (remember each move increments two elements):
[1,2,3] => [2,3,3] => [3,4,3] => [4,4,4]
Example 2:
Input: nums = [1,1,1]
Output: 0
Constraints:
n == nums.length
1 <= nums.length <= 10^5
-10^9 <= nums[i] <= 10^9
The answer is guaranteed to fit in a 32-bit integer.
Solution (Java)
class Solution {
public int minMoves(int[] nums) {
int min = nums[0];
int sum = nums[0];
// determining the total sum and smallest element of the input array
for (int i = 1; i <= nums.length - 1; i++) {
sum += nums[i];
min = Math.min(min, nums[i]);
}
return sum - (min * nums.length);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).