Problem
You are given a 0-indexed integer array nums
whose length is a power of 2
.
Apply the following algorithm on nums
:
Let
n
be the length ofnums
. Ifn == 1
, end the process. Otherwise, create a new 0-indexed integer arraynewNums
of lengthn / 2
.For every even index
i
where0 <= i < n / 2
, assign the value ofnewNums[i]
asmin(nums[2 * i], nums[2 * i + 1])
.For every odd index
i
where0 <= i < n / 2
, assign the value ofnewNums[i]
asmax(nums[2 * i], nums[2 * i + 1])
.Replace the array
nums
withnewNums
.Repeat the entire process starting from step 1.
Return **the last number that remains in *nums
* after applying the algorithm.**
Example 1:
Input: nums = [1,3,5,2,4,8,2,2]
Output: 1
Explanation: The following arrays are the results of applying the algorithm repeatedly.
First: nums = [1,5,4,2]
Second: nums = [1,4]
Third: nums = [1]
1 is the last remaining number, so we return 1.
Example 2:
Input: nums = [3]
Output: 3
Explanation: 3 is already the last remaining number, so we return 3.
Constraints:
1 <= nums.length <= 1024
1 <= nums[i] <= 10^9
nums.length
is a power of2
.
Solution (Java)
class Solution {
public int minMaxGame(int[] nums) {
int n = nums.length;
if (n == 1) {
return nums[0];
}
int[] newNums = new int[n / 2];
for (int i = 0; i < n / 2; i++) {
if (i % 2 == 0) {
newNums[i] = Math.min(nums[2 * i], nums[2 * i + 1]);
} else {
newNums[i] = Math.max(nums[2 * i], nums[2 * i + 1]);
}
}
return minMaxGame(newNums);
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).