Problem
You are given a 0-indexed integer array nums
, where nums[i]
is a digit between 0
and 9
(inclusive).
The triangular sum of nums
is the value of the only element present in nums
after the following process terminates:
Let
nums
comprise ofn
elements. Ifn == 1
, end the process. Otherwise, create a new 0-indexed integer arraynewNums
of lengthn - 1
.For each index
i
, where0 <= i < n - 1
, assign the value ofnewNums[i]
as(nums[i] + nums[i+1]) % 10
, where%
denotes modulo operator.Replace the array
nums
withnewNums
.Repeat the entire process starting from step 1.
Return the triangular sum of nums
.
Example 1:
Input: nums = [1,2,3,4,5]
Output: 8
Explanation:
The above diagram depicts the process from which we obtain the triangular sum of the array.
Example 2:
Input: nums = [5]
Output: 5
Explanation:
Since there is only one element in nums, the triangular sum is the value of that element itself.
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] <= 9
Solution (Java)
class Solution {
public int triangularSum(int[] nums) {
int len = nums.length;
while (len-- > 1) {
for (int i = 0; i < len; i++) {
nums[i] += nums[i + 1];
nums[i] %= 10;
}
}
return nums[0];
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).