2428. Maximum Sum of an Hourglass

Difficulty:
Related Topics:
    Similar Questions:

    Problem

    You are given an m x n integer matrix grid.

    We define an hourglass as a part of the matrix with the following form:

    Return **the *maximum* sum of the elements of an hourglass**.

    Note that an hourglass cannot be rotated and must be entirely contained within the matrix.

      Example 1:

    Input: grid = [[6,2,1,3],[4,2,1,5],[9,2,8,7],[4,1,2,9]]
    Output: 30
    Explanation: The cells shown above represent the hourglass with the maximum sum: 6 + 2 + 1 + 2 + 9 + 2 + 8 = 30.
    

    Example 2:

    Input: grid = [[1,2,3],[4,5,6],[7,8,9]]
    Output: 35
    Explanation: There is only one hourglass in the matrix, with the sum: 1 + 2 + 3 + 5 + 7 + 8 + 9 = 35.
    

      Constraints:

    Solution (Java)

    class Solution {
        public int maxSum(int[][] grid) {
    
            int r = grid.length;
            int c = grid[0].length;
    
            int max = 0;
    
            for(int i = 0; i < r-2; i++){
                for(int j = 0; j < c-2; j++){
    
                    int sum = 0;
                    for(int v = i; v < i+3; v++){
                        for(int k = j; k < j+3; k++){
                            sum += grid[v][k];
                        }
                    }
    
                    sum = sum - grid[i+1][j] - grid[i+1][j+2];
    
                    max = Math.max(max, sum);
                }
            }
    
            return max;
        }
    }
    

    Explain:

    nope.

    Complexity: