Problem
Given a m x n
matrix mat
and an integer k
, return a matrix answer
where each answer[i][j]
is the sum of all elements mat[r][c]
for:
i - k <= r <= i + k,
j - k <= c <= j + k
, and(r, c)
is a valid position in the matrix.
Example 1:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]
Example 2:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n, k <= 100
1 <= mat[i][j] <= 100
Solution (Java)
class Solution {
public int[][] matrixBlockSum(int[][] mat, int k) {
int rows = mat.length;
int cols = mat[0].length;
int[][] prefixSum = new int[rows + 1][cols + 1];
for (int i = 1; i <= rows; i++) {
for (int j = 1; j <= cols; j++) {
prefixSum[i][j] =
mat[i - 1][j - 1]
- prefixSum[i - 1][j - 1]
+ prefixSum[i - 1][j]
+ prefixSum[i][j - 1];
}
}
int[][] result = new int[rows][cols];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
int iMin = Math.max(i - k, 0);
int iMax = Math.min(i + k, rows - 1);
int jMin = Math.max(j - k, 0);
int jMax = Math.min(j + k, cols - 1);
result[i][j] =
prefixSum[iMin][jMin]
+ prefixSum[iMax + 1][jMax + 1]
- prefixSum[iMax + 1][jMin]
- prefixSum[iMin][jMax + 1];
}
}
return result;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).