918. Maximum Sum Circular Subarray

Difficulty:
Related Topics:
Similar Questions:

    Problem

    Given a circular integer array nums of length n, return **the maximum possible sum of a non-empty *subarray* of **nums.

    A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].

    A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.

      Example 1:

    Input: nums = [1,-2,3,-2]
    Output: 3
    Explanation: Subarray [3] has maximum sum 3.
    

    Example 2:

    Input: nums = [5,-3,5]
    Output: 10
    Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
    

    Example 3:

    Input: nums = [-3,-2,-3]
    Output: -2
    Explanation: Subarray [-2] has maximum sum -2.
    

      Constraints:

    Solution (Java)

    class Solution {
        private int kadane(int[] nums, int sign) {
            int currSum = Integer.MIN_VALUE;
            int maxSum = Integer.MIN_VALUE;
            for (int i : nums) {
                currSum = sign * i + Math.max(currSum, 0);
                maxSum = Math.max(maxSum, currSum);
            }
            return maxSum;
        }
    
        public int maxSubarraySumCircular(int[] nums) {
            if (nums.length == 1) {
                return nums[0];
            }
            int sumOfArray = 0;
            for (int i : nums) {
                sumOfArray += i;
            }
            int maxSumSubarray = kadane(nums, 1);
            int minSumSubarray = kadane(nums, -1) * -1;
            if (sumOfArray == minSumSubarray) {
                return maxSumSubarray;
            } else {
                return Math.max(maxSumSubarray, sumOfArray - minSumSubarray);
            }
        }
    }
    

    Explain:

    nope.

    Complexity: