1960. Maximum Product of the Length of Two Palindromic Substrings

Difficulty:
Related Topics:
Similar Questions:

Problem

You are given a 0-indexed string s and are tasked with finding two **non-intersecting palindromic **substrings of odd length such that the product of their lengths is maximized.

More formally, you want to choose four integers i, j, k, l such that 0 <= i <= j < k <= l < s.length and both the substrings s[i...j] and s[k...l] are palindromes and have odd lengths. s[i...j] denotes a substring from index i to index j inclusive.

Return **the *maximum* possible product of the lengths of the two non-intersecting palindromic substrings.**

A palindrome is a string that is the same forward and backward. A substring is a contiguous sequence of characters in a string.

  Example 1:

Input: s = "ababbb"
Output: 9
Explanation: Substrings "aba" and "bbb" are palindromes with odd length. product = 3 * 3 = 9.

Example 2:

Input: s = "zaaaxbbby"
Output: 9
Explanation: Substrings "aaa" and "bbb" are palindromes with odd length. product = 3 * 3 = 9.

  Constraints:

Solution

class Solution {
    public long maxProduct(String s) {
        int n = s.length();
        if (n == 2) {
            return 1;
        }
        int[] len = manaCherS(s);
        long[] left = new long[n];
        int max = 1;
        left[0] = max;
        for (int i = 1; i <= n - 1; i++) {
            if (len[(i - max - 1 + i) / 2] > max) {
                max += 2;
            }
            left[i] = max;
        }
        max = 1;
        long[] right = new long[n];
        right[n - 1] = max;
        for (int i = n - 2; i >= 0; i--) {
            if (len[(i + max + 1 + i) / 2] > max) {
                max += 2;
            }
            right[i] = max;
        }
        long res = 1;
        for (int i = 1; i < n; i++) {
            res = Math.max(res, left[i - 1] * right[i]);
        }
        return res;
    }

    private int[] manaCherS(String s) {
        int len = s.length();
        int[] p = new int[len];
        int c = 0;
        int r = 0;
        for (int i = 0; i < len; i++) {
            int mirror = (2 * c) - i;
            if (i < r) {
                p[i] = Math.min(r - i, p[mirror]);
            }
            int a = i + (1 + p[i]);
            int b = i - (1 + p[i]);
            while (a < len && b >= 0 && s.charAt(a) == s.charAt(b)) {
                p[i]++;
                a++;
                b--;
            }
            if (i + p[i] > r) {
                c = i;
                r = i + p[i];
            }
        }
        for (int i = 0; i < len; i++) {
            p[i] = 1 + 2 * p[i];
        }
        return p;
    }
}

Explain:

nope.

Complexity: