1594. Maximum Non Negative Product in a Matrix

Difficulty:
Related Topics:
Similar Questions:

    Problem

    You are given a m x n matrix grid. Initially, you are located at the top-left corner (0, 0), and in each step, you can only move right or down in the matrix.

    Among all possible paths starting from the top-left corner (0, 0) and ending in the bottom-right corner (m - 1, n - 1), find the path with the maximum non-negative product. The product of a path is the product of all integers in the grid cells visited along the path.

    Return the **maximum non-negative product *modulo* **10^9 + 7. **If the maximum product is negative, return **-1.

    Notice that the modulo is performed after getting the maximum product.

      Example 1:

    Input: grid = [[-1,-2,-3],[-2,-3,-3],[-3,-3,-2]]
    Output: -1
    Explanation: It is not possible to get non-negative product in the path from (0, 0) to (2, 2), so return -1.
    

    Example 2:

    Input: grid = [[1,-2,1],[1,-2,1],[3,-4,1]]
    Output: 8
    Explanation: Maximum non-negative product is shown (1 * 1 * -2 * -4 * 1 = 8).
    

    Example 3:

    Input: grid = [[1,3],[0,-4]]
    Output: 0
    Explanation: Maximum non-negative product is shown (1 * 0 * -4 = 0).
    

      Constraints:

    Solution (Java)

    class Solution {
        private static class Tuple {
            long max;
            long min;
    
            public Tuple(long a, long b) {
                this.max = a;
                this.min = b;
            }
        }
    
        public int maxProductPath(int[][] grid) {
            // DP
            if (grid == null || grid.length == 0 || grid[0] == null || grid[0].length == 0) {
                return 0;
            }
            int rows = grid.length;
            int cols = grid[0].length;
            Tuple[][] dp = new Tuple[rows][cols];
            for (int i = 0; i < rows; i++) {
                for (int j = 0; j < cols; j++) {
                    dp[i][j] = new Tuple(1, 1);
                }
            }
            // Init first row and column
            dp[0][0].max = grid[0][0];
            dp[0][0].min = grid[0][0];
            for (int i = 1; i < rows; i++) {
                dp[i][0].max = grid[i][0] * dp[i - 1][0].max;
                dp[i][0].min = grid[i][0] * dp[i - 1][0].min;
            }
            for (int i = 1; i < cols; i++) {
                dp[0][i].max = grid[0][i] * dp[0][i - 1].max;
                dp[0][i].min = grid[0][i] * dp[0][i - 1].min;
            }
            // DP
            for (int i = 1; i < rows; i++) {
                for (int j = 1; j < cols; j++) {
                    long up1 = dp[i - 1][j].max * grid[i][j];
                    long up2 = dp[i - 1][j].min * grid[i][j];
                    long left1 = dp[i][j - 1].max * grid[i][j];
                    long left2 = dp[i][j - 1].min * grid[i][j];
                    // max(up1, up2, left1, left2)
                    dp[i][j].max = Math.max(up1, Math.max(up2, Math.max(left1, left2)));
                    // min(up1, up2, left1, left2)
                    dp[i][j].min = Math.min(up1, Math.min(up2, Math.min(left1, left2)));
                }
            }
            if (dp[rows - 1][cols - 1].max < 0) {
                return -1;
            }
            return (int) (dp[rows - 1][cols - 1].max % (1e9 + 7));
        }
    }
    

    Explain:

    nope.

    Complexity: