Problem
Given an m x n
matrix of **distinct **numbers, return **all *lucky numbers* in the matrix in **any *order*.
A lucky number is an element of the matrix such that it is the minimum element in its row and maximum in its column.
Example 1:
Input: matrix = [[3,7,8],[9,11,13],[15,16,17]]
Output: [15]
Explanation: 15 is the only lucky number since it is the minimum in its row and the maximum in its column.
Example 2:
Input: matrix = [[1,10,4,2],[9,3,8,7],[15,16,17,12]]
Output: [12]
Explanation: 12 is the only lucky number since it is the minimum in its row and the maximum in its column.
Example 3:
Input: matrix = [[7,8],[1,2]]
Output: [7]
Explanation: 7 is the only lucky number since it is the minimum in its row and the maximum in its column.
Constraints:
m == mat.length
n == mat[i].length
1 <= n, m <= 50
1 <= matrix[i][j] <= 10^5
.All elements in the matrix are distinct.
Solution (Java)
class Solution {
public List<Integer> luckyNumbers(int[][] matrix) {
List<Integer> mini = new ArrayList<>();
List<Integer> maxi = new ArrayList<>();
for (int[] arr : matrix) {
int min = Integer.MAX_VALUE;
for (int j : arr) {
if (min > j) {
min = j;
}
}
mini.add(min);
}
int cols = matrix[0].length;
for (int c = 0; c < cols; ++c) {
int max = Integer.MIN_VALUE;
for (int[] ints : matrix) {
if (ints[c] > max) {
max = ints[c];
}
}
maxi.add(max);
}
List<Integer> res = new ArrayList<>();
for (int value : mini) {
if (maxi.contains(value)) {
res.add(value);
}
}
return res;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).