Problem
You are given a 0-indexed string s
. You are also given a 0-indexed string queryCharacters
of length k
and a 0-indexed array of integer indices queryIndices
of length k
, both of which are used to describe k
queries.
The ith
query updates the character in s
at index queryIndices[i]
to the character queryCharacters[i]
.
Return an array lengths
**of length *k
* where** lengths[i]
**is the *length* of the longest substring of s
consisting of only one repeating character after the** ith
query** is performed.**
Example 1:
Input: s = "babacc", queryCharacters = "bcb", queryIndices = [1,3,3]
Output: [3,3,4]
Explanation:
- 1st query updates s = "bbbacc". The longest substring consisting of one repeating character is "bbb" with length 3.
- 2nd query updates s = "bbbccc".
The longest substring consisting of one repeating character can be "bbb" or "ccc" with length 3.
- 3rd query updates s = "bbbbcc". The longest substring consisting of one repeating character is "bbbb" with length 4.
Thus, we return [3,3,4].
Example 2:
Input: s = "abyzz", queryCharacters = "aa", queryIndices = [2,1]
Output: [2,3]
Explanation:
- 1st query updates s = "abazz". The longest substring consisting of one repeating character is "zz" with length 2.
- 2nd query updates s = "aaazz". The longest substring consisting of one repeating character is "aaa" with length 3.
Thus, we return [2,3].
Constraints:
1 <= s.length <= 10^5
s
consists of lowercase English letters.k == queryCharacters.length == queryIndices.length
1 <= k <= 10^5
queryCharacters
consists of lowercase English letters.0 <= queryIndices[i] < s.length
Solution
class Solution {
static class TreeNode {
int start;
int end;
char leftChar;
int leftCharLen;
char rightChar;
int rightCharLen;
int max;
TreeNode left;
TreeNode right;
TreeNode(int start, int end) {
this.start = start;
this.end = end;
left = null;
right = null;
}
}
public int[] longestRepeating(String s, String queryCharacters, int[] queryIndices) {
char[] sChar = s.toCharArray();
char[] qChar = queryCharacters.toCharArray();
TreeNode root = buildTree(sChar, 0, sChar.length - 1);
int[] result = new int[qChar.length];
for (int i = 0; i < qChar.length; i++) {
updateTree(root, queryIndices[i], qChar[i]);
if (root != null) {
result[i] = root.max;
}
}
return result;
}
private TreeNode buildTree(char[] s, int from, int to) {
if (from > to) {
return null;
}
TreeNode root = new TreeNode(from, to);
if (from == to) {
root.max = 1;
root.rightChar = root.leftChar = s[from];
root.leftCharLen = root.rightCharLen = 1;
return root;
}
int middle = from + (to - from) / 2;
root.left = buildTree(s, from, middle);
root.right = buildTree(s, middle + 1, to);
updateNode(root);
return root;
}
private void updateTree(TreeNode root, int index, char c) {
if (root == null || root.start > index || root.end < index) {
return;
}
if (root.start == index && root.end == index) {
root.leftChar = root.rightChar = c;
return;
}
updateTree(root.left, index, c);
updateTree(root.right, index, c);
updateNode(root);
}
private void updateNode(TreeNode root) {
if (root == null) {
return;
}
root.leftChar = root.left.leftChar;
root.leftCharLen = root.left.leftCharLen;
root.rightChar = root.right.rightChar;
root.rightCharLen = root.right.rightCharLen;
root.max = Math.max(root.left.max, root.right.max);
if (root.left.rightChar == root.right.leftChar) {
int len = root.left.rightCharLen + root.right.leftCharLen;
if (root.left.leftChar == root.left.rightChar
&& root.left.leftCharLen == root.left.end - root.left.start + 1) {
root.leftCharLen = len;
}
if (root.right.leftChar == root.right.rightChar
&& root.right.leftCharLen == root.right.end - root.right.start + 1) {
root.rightCharLen = len;
}
root.max = Math.max(root.max, len);
}
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).