Problem
You are given a 0-indexed integer array nums. A subarray s of length m is called alternating if:
mis greater than1.s1 = s0 + 1.- The 0-indexed subarray
slooks like[s0, s1, s0, s1,...,s(m-1) % 2]. In other words,s1 - s0 = 1,s2 - s1 = -1,s3 - s2 = 1,s4 - s3 = -1, and so on up tos[m - 1] - s[m - 2] = (-1)m.
Return **the maximum length of all *alternating* subarrays present in **nums *or -1 if no such subarray exists***.**
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [2,3,4,3,4]
Output: 4
Explanation: The alternating subarrays are [3,4], [3,4,3], and [3,4,3,4]. The longest of these is [3,4,3,4], which is of length 4.
Example 2:
Input: nums = [4,5,6]
Output: 2
Explanation: [4,5] and [5,6] are the only two alternating subarrays. They are both of length 2.
Constraints:
2 <= nums.length <= 1001 <= nums[i] <= 104
Solution (Java)
class Solution {
public int alternatingSubarray(int[] A) {
int n = A.length, res = 0, j = 0;
for (int i = 0; i < n; ++i)
for (j = i + 1; j < n && A[j] == A[i] + (j - i) % 2; ++j)
res = Math.max(res, j - i + 1);
return res > 1 ? res : -1;
}
}
Explain:
nope.
Complexity:
- Time complexity : O(n).
- Space complexity : O(n).